
Unix Programming

UNIT-I

B.Tech(CSE)-V SEM

1

UNIT-I : Introduction to UNIX: The UNIX Operating System, A brief history of UNIX, The UNIX Architecture,
Basic features of UNIX. General Purpose Utilities- cal, date, man, echo, bc, clear, passwd, who,
whoami,uname Directory Handling Commands: pwd, cd, mkdir, rmdir. File Handling Utilities - cat, touch, cp,
ls, rm, mv, nl, pg,tar,wc Displaying Commands: more,head,tail, simple filters and commands: cmp, comm.,
ulink, diff, find, cut, paste,sort, uniq, tr, finger. Disk Utilities– du, df, mount, umount.Process Utilities–ps,
kill. Networking Utilities– ping, telnet, rlogin, ftp, finger.

UNIT-II : THE FILE SYSTEM : Types of Files, Directories and Files, UNIX File System, Absolute and relative
pathnames, File Attributes and Permissions ,The File Command -knowing the File Type, Chmod Command-
Changing File Permissions, Chown Command-Changing the Owner of a File, Chgrp Command- Changing the
Group of a File. Vi editor-editing with vi, moving the cursor, editing, copying and moving text, pattern
searching.

UNIT-III : Introduction to Shell Programming : Shell Variables-The Export Command-The Profile File a Script
Run During Starting-The First Shell Script-The read Command-Positional parameters-The $? Variable
knowing the exit Status-More about the Set Command-The Exit Command-Branching Control Structures-
Loop Control Structures-The Continue and Break Statement-The Expr Command: Performing Integer
Arithmetic-Real Arithmetic in Shell Programs-The here Document(<<)-I/O Redirection, The Sleep
Command-Debugging Scripts-The Script Command-The Eval Command-The Exec Command. Command Line
Structure-Met characters.

Syllabus

UNIT-IV :Regular Expressions:grep, egrep, fgrep, Sed- line addressing, context addressing, text
editing,substitution.
Programming with awk: syntax of awk programming statement, structure of awk script, variables ,records
fields, and special variables, patterns, operators ,simple input files, awk programming- simple awk
programming, awk control structures, looping, functions in awk.

UNIT-V: Unix process: What is a process, process structure, process identifiers, starting new process,
waiting for a process, zombie process, system call interface for process management - fork, vfork, exit,
wait, waitpid, exec system call.

UNIT : VI Signals : Signal functions, unreliable signals, interrupted system calls, kill and raise functions,
alarm, pause functions, abort, sleep functions.
Text Books:
Introduction to Unix and shell programming, M G venkateshmurthy, Pearson education

Advanced programming in the unix environment, W. Richard Stevens, 3rd Edition, Pearson education

REFERENCES
1. Unix and shell Programming, B.A. Forouzan& R.F. Giberg, ,Thomson, First Edition, NewDelhi, 2003.

Syllabus

SRI VASAVI ENGINEERING COLLEGE(Autonomous)
PEDATADEPALLI, TADEPALLIGUDEM-534 101

Department of Computer Science & Engineering(Accredited by NBA)

Syllabus Details

Course Title: Unix Programming

Year&Sem:III & V SEM
Academic Year:2020-21

S.No. COURSE OUTCOMES

(After completion of the course, The Learner is able to)

KNOWLEDG

E LEVEL

CO1 Illustrate the UNIX basics and the working of the built in commands

in Unix
K2

CO2 Demonstrate the file system and change the permissions associated

with files
K2

CO3 Develop basic programs using shell script K3

CO4 Demonstrate the grep family and data transforming programs sed,

and awk
K2

CO5 Construct programs for process system calls K3

CO6 Explain the concept of signals and its system call K2

Pre-Requisites towards Unix:
 What is an Operating System?

 What are the various functions of an Operating
System?

 What are the different types of Operating systems?

 What is a multi-user operating system?

 What is a task or a process?

 What are the different types of processes?

 What is a multi-tasking operating system?

Dept of CSE 5

What is an Operating System?

• It is an interface between a computer user and computer
hardware.

• Every computer must have at least one OS to run other
programs.

Dept of CSE 6

Functions of an Operating system:

Dept of CSE 7

Types of an Operating Systems:
An Operating System can be categorized into:

1. Single User – Single Tasking operating system

2. Single User – Multi Tasking operating system

3. Multi User – Multi Tasking operating system

Dept of CSE 8

Types of an Operating Systems(Contd..)

1. Single User – Single Tasking operating system: In this type
of operating system only one user can log into the system
and can perform only one task at a time. Ex: MS-DOS

2. Single User – Multi Tasking operating system: This type of
operating system supports only one user to log into the
system but a user can perform multiple tasks at a time,
browsing internet while playing songs etc. Ex: windows
98,xp,vista, seven etc.

3. Multi User – Multi Tasking operating system: These type of
operating system provides multiple users to login into the
system and also each user can perform various tasks at a
time. In a broader term multiple users can logged into
system and share the resources of the system at the same
time. Ex: UNIX, LINUX etc.

Dept of CSE 9

UNIT-I

Academic year:2020-21
Year-Semester:III-I
Course Title: Unix programming

SRI VASAVI ENGINEERING COLLEGE
PEDATADEPALLI, TADEPALLIGUDEM-534 101

Department of Computer Science & Engineering

Introduction to Unix: The Unix OS

 Unix is a multi-user and multi-tasking Operating System.

 Unix was designed to let a number of programmers access
at the same time and share its resources.

 The important features that make Unix favorite are:

 Multitasking

 Multiuser

 Portability

 Pattern Matching

 Unix Communication

Dept of CSE 11

A Brief History of UNIX:
 First Version was created in Bell Labs in 1969.

 Some of the Bell Labs programmers who had worked on this project,
Ken Thompson, Dennis Ritchie, Rudd Canaday, and Doug McIlroy
designed and implemented the first version of the Unix File System on a
PDP-7 along with a few utilities. It was given the name UNIX by Brian
Kernighan.

 1973 Unix is re-written mostly in C, a
new language developed by Dennis Ritchie.

 Being written in this high-level language greatly decreased the effort

needed to port it to new machines.

 1980 BSD 4.1 (Berkeley Software Development)

 1983 SunOS, BSD 4.2, System V

1988 AT&T and Sun Microsystems jointly develop System V Release 4
(SVR4). This later developed into UnixWare and Solaris 2.

1991 Linux was originated.

Dept of CSE 12

The UNIX Architecture:

Dept of CSE 13

 The UNIX operating system (OS) consists of :

 a kernel layer

 a shell layer

 an application layer & files.

Dept of CSE 14

Kernel
 The kernel is the heart of the operating system.

 It interacts with the machine’s hardware.

 It is a collection of routines written in C.

 It is loaded into memory when the system is booted.

 Main responsibilities:

 Memory management

 Process management (using commands: kill, ps, nohup)

 File management (using commands: rm, cat, ls, rmdir, mkdir)

 To access the hardware, user programs use the services of the kernel via
system calls.

Dept of CSE 15

Shell
 The shell interacts with the user.

 The shell is a command line interpreter (CLI).

 Main responsibilities:

 interprets the commands the user types in and

 dispatches the command to the kernel for execution

 There can be several shells in action, one for each user
who’s logged in.

 There are multiple shells that are used by the UNIX OS.

 For example: Bourne shell (sh), the C shell (csh), the Korn
shell (ksh) and Bourne Again shell (bash).

Dept of CSE 16

Shell (Contd…)
 Meta characters provide short form representations and

time also save.

 If shell sees any meta characters it expands that meta
characters it expands that meta characters pass to kernel .
If any blank spaces are appear they are removed at shell
prompt and then passed to kernel.

Dept of CSE 17

Meta character Description

*

To match 0 (or) more characters

Ex: C*t

It means ct,caat,cbt,……..

?

To match single character in a file

Ex: C?t

It means cat, cot,cit,cmt

[]

Specify a characters range or group of

characters.

Ex: [a-z] and [A-Z]

Types of Shells
 There are different types of shells available. Some of them

are:

1. The Bourne Shell(sh): This can be used for any O.S. This
is highly portable. It is developed by Stephen Bourn, so it is
called Bourn Shell.

2. C Shell: This is created by Bill Joy. It has two advantages
over the Bourne shell.

• Aliasing of commands

• History Commands

3. Korn Shell: It is a superset of Bourne shell. It offers a lot
more capabilities and is decidedly more efficient than the
other. It was designed to be so by David Korn of AT&T’s
Bell Labs.

Dept of CSE 18

List of Default Shell Prompts

Dept of CSE 19

Prompt Shell

$(dollar) Bourne and Korn Shells (sh, bash and ksh)

%

(percent)

C Shells (csh and tcsh)

(hash) Any shell as root

Application and Files
 Application

 This layer includes the commands, word processors,
graphic programs and database management programs.

 File

 A file is an array of bytes that stores information.

 All the data of Unix is organized into files.

 All files are then organized into directories.

 These directories are further organized into a tree-like
structure called the file system.

Dept of CSE 20

Utilities/ Commands in Unix:
 Definition:

 A command is a program that tells the unix system to
do something.

• Commands are generally issued by typing them in at
the command line (i.e., the all-text display mode)
and then pressing the ENTER key, which passes
them to the shell.

Dept of CSE 21

Structure of a Unix Command:
 UNIX commands take the following general form:

 $Command [options] [arguments]

 where an argument indicates on what the command
is to perform its action, usually a file or series of files.

 An option modifies the command, changing the way
it performs.

 Commands are case sensitive

 command and Command are not the same.

 We can provide more than one command in a single
line using ;

Dept of CSE 22

Command structure (Contd…)
Options

• Options are generally preceded by a hyphen (-), and for most
commands, more than one option can be strung together, in the
form:

command -[option][option][option]

 Example: $ ls –l // -l option will perform a long list on all
files in the current directory

 There must not be any whitespaces between – and l.

 Options are also arguments, but given a special name because they are
predetermined.

 Options can be normally combined with only one – sign.

 Thus $ ls –l –a –t is same as $ ls –lat
Dept of CSE 23

Command Structure (Contd…)
Filename Arguments:
 Many UNIX commands use a filename as argument so that the

command can take input from the file.

 If a command uses a filename as argument, it will usually be the last
argument, after all options.

Example:

 $ ls -lat chap01 chap02 chap03 # Multiple filenames as arguments

 $ rm file1 file2 file3

 The command with its arguments and options is known as the command
line.

 This line can be considered complete only after the user has hit [Enter].

 The complete line is then fed to the shell as its input for interpretation and
execution.

Dept of CSE 24

Command Structure (Contd…)
Exceptions:

 There are some commands that don't accept any arguments.

 There are also some commands that may or may not be specified with
arguments.

 For Example:

 The ls command can run

 → without arguments (ls)

 → with only options (ls –l)

 → with only filenames (ls f1 f2), or

 → using a combination of both (ls –l f1 f2).

 There are some commands compulsorily take options (cut).

 There are some commands which can take an expression as an argument, or
a set of instructions as argument. Ex: grep, sed

Dept of CSE 25

Getting Help On UNIX Commands

1. $man <Command name>

Example: $man who

2. $<Command name> --help

Example: $who --help

3. $info <Command name>

Example: $info cat

Dept of CSE 26

man: Browsing The Manual Pages
 This command can be used to display manual (documentation) of a specified

command.

 Syntax:

 $ man command

 A pager is a program that

 → displays one screenful information and

 → pauses for the user to view the contents.

 The man command is configured to work with a pager.

 Following two commands can be used for navigation:

 Spacebar or f – moves forward one screen

 b – moves back one screen

 Finally, to quit the pager, press q. You'll be returned to the shell's prompt ($).

Dept of CSE 27

Understanding The man Documentation

 The man documentation is organized in eight (08)
sections.

 Example:

 $ man wc //Help on the wc command User
Commands wc(1)

Dept of CSE 28

Dept of CSE 29

NAME

wc – display a count of lines, words and characters in a file

SYNOPSIS

wc [-c | -m | -C] [-lw] [files....]

DESCRIPTION

The wc utility reads one or more input files and, by default, writes the number of newline

characters, words and bytes contained in each input file to the standard output.

OPTIONS

The following options are supported:

-c Count Bytes

-m Count Characters

-l Count Lines

-w Count Words

OPERANDS

The following operands are supported:

File - a path name of an input file. If no file operand are specified, the standard input will be

used.

USAGE

See largefiles(5) for the behavious of wc when encountering files >= 2 Gbytes.

EXIT STATUS

0 Successful Completion

> 0 An Error Occurred

SEE ALSO

space(3C), iswalpha(3C), iswspace(3C), setlocale(3C), attributes(5), environ(5), largefile(5)

Understanding the man documentation:

 A man is divided into a number of compulsory and optional sections.

 Every command doesn’t need all sections, but the first three (NAME, SYNOPSIS and
DESCRIPTION) are generally seen in all man pages.

 NAME presents a one-line introduction of the command.

 SYNOPSIS shows the syntax used by the command.

 DESCRIPTION provides a detailed description.

 The SYNOPSIS follows certain conventions and rules:

 If a command argument is enclosed in rectangular brackets, then it is optional;
otherwise, the argument is required.

 The ellipsis (a set if three dots) implies that there can be more instances of the
preceding word.

 The | means that only one of the options shows on either side of the pipe can be
used.

 All the options used by the command are listed in OPTIONS section.

 There is a separate section named EXIT STATUS which lists possible error conditions and
their numeric representation.

Dept of CSE 30

General Purpose Utilities:
 cal

 date

 man

 echo

 bc

 clear

 passwd

 who

 whoami

 uname

Dept of CSE 31

The cal (Calender) command:
• The cal command is used to invoke the calendar of

any specific month, or a complete year.

• Synopsis:
$cal [[month]year]

• Everything within rectangular brackets is optional,
so cal can be used without arguments, in which case
it displays the calendar of the current month.

Dept of CSE 32

The cal command:
• To see the calendar of a specific month you need to

specify two parameters with the cal command.

• Ex: To display the calendar of MARCH 2006 we can
write

$ cal 03 2006

• When we print calendar of the entire year it will not
fit in the current screen page, it scrolls off too
rapidly before you can use [ctrl-s] to pause it.

Dept of CSE 33

The cal command (Contd…)
• To make cal put in the same way man pauses , use

cal with a pager(more or less) using the

 |(pipeline) symbol to connect them.

• Ex: $ cal 2006 | more

• The | symbol connects two commands (in pipe line)
where more takes input from the
cal command.

Dept of CSE 34

date: Displaying the system date

• Date command displays the current date and time
to the nearest second.

• Synopsis:
$ date

• The command can also be used with suitable format
specifier as arguments.

• Each format is preceded by the+ symbol, followed
by the % operator, and a single character describing
the format.

Dept of CSE 35

date: Displaying the system date
• For instance, you can print only the month number

using the format +%m

$ date +%m

• To print month name

$ date +%h

• If want to combine them in one command.

$ date +”%h %m”

Dept of CSE 36

date: Displaying the system date
• There are many other format specifiers:

– d – The day of the month (1-31)

– y – The last two digits of the year.

– H, M and S – The hour, minute and second
respectively.

– D – The date in the format mm/dd/yy.

– T – The time in the format hh:mm:ss.

• When you use multiple formats then you must
enclose within double quotes.

Dept of CSE 37

echo: Displaying a message
• echo command is used often in shell scripts to

display diagnostic messages on the terminal , or to
issue prompts for taking user input.

• Originally echo was an external command but now
all shells have echo built in.

• An escape sequence is generally two character string
beginning with a \(backslash).

• An escape sequence is used at the end of the string
and is used as an argument to echo.

Dept of CSE 38

echo: Displaying a message

• Example:

 $ echo “Enter Filename: \c”

• Like \c there are other escape sequences.

Dept of CSE 39

Escape sequence used by echo and printf

Dept of CSE 40

printf: an alternative for echo
• The printf command is available in unix and is an

alternative for echo.

• Like echo it is an external command

• Synopsis:

$ printf “No file name entered \n”

• Printf uses formatted strings in the same way as C
language uses.

• Here are commonly used formatted string

Dept of CSE 41

printf : an alternative for echo

Dept of CSE 42

bc: The Calculator
• bc command is used for command line calculator. It is

similar to basic calculator by using which we can do basic
mathematical calculations.

Synopsys:

$ bc

2+2

output:4

• bc can take multiple inputs each separated by a ;

• Example: $ bc

12 *12 ; 2 ^3
 Output:

144

8
Dept of CSE 43

bc: The Calculator
Examples:

1. Input : $ echo "12+5" | bc

Output : 17

2.Input : $ echo "10^2" | bc

Output : 100

3. Input: $ x=`echo "12+5" | bc` $ echo $x

Output:17

Dept of CSE 44

bc: The Calculator
 bc can perform only integer computations and

truncates the decimal portion that it sees.
• For example :

9/5 will produce 1 as output.

• To enable floating point computations, you have to set
scale to the number of digits of precision before you
key in the expression.

Example:

$ echo "scale=2;$x/$y" | bc

Dept of CSE 45

Dept of CSE 46

• For example:

Scale=2

17/7 truncates to 2 decimal places

2.24

• bc has another use and that is converting numbers from
one base to another.

• Set ibase(input base) to 2 before you provide the number

bc: The calculator
• Two special variables of bc : ibase & obase.

• These 2 variables are used to define the base of the
numbers.

• ibase is used to specify the base of the input number, and
obase for the output result.

Examples:

1. $echo “obase=16; 80" | bc #Decimal to Hex Number

2. $ echo "obase=8;80" | bc #Decimal to Octal Number

3. $ echo "obase=2;80" | bc #Decimal to Binary Number

4. $ echo "ibase=2;1010000" | bc # convert a binary number to decimal

5. $ echo "obase=16;ibase=2;1010000" | bc #convert a binary number to hex

Dept of CSE 47

clear - clear the terminal screen
 clear is a standard Unix computer operating system

command that is used to clear the terminal screen.

 The clear command doesn’t take any argument and it
is almost similar to cls command on a number of other
operating systems.

 $ clear

Dept of CSE 48

Terminal Before Executing clear command:

Dept of CSE 49

Terminal after executing clear command:

Dept of CSE 50

passwd: Changing your password

• To change the password of any unix user use
the passwd command.

• Synopsis:

$ passwd

• passwd expects you to respond three times.
– First it prompts for the old password.

– Next it checks whether you have entered a valid
password, and if you have , it then prompts for
the new password.

Dept of CSE 51

passwd: Changing your password

– Enter the new password with password naming rules
applicable to your system.

– Finally , passwd asks you to re enter the new password.

– If everything goes smoothly , the new password is registered
by the system.

– When you enter the password , the string is encrypted by the
system.

Dept of CSE 52

Password Framing rules and Discipline
• There are some rules that you are expected to follow when

handling your own password

– Don’t choose a password similar to old one.

– Don’t use commonly used names like names of friends,
relatives, pets and so forth. A system may check its own
directory and throw out those passwords that are easily
guessed.

– Use a mix of alphabetic and numeric characters. Enterprise unix
don’t allow passwords that are wholly alphabetic or numeric

– Do not write the password in an easily accessible document.

– Change the password regularly.

Dept of CSE 53

who: Who are the users?
• It is more powerful and displays data about all the

users who have logged into the system currently.

• Synopsis:

$ who

Dept of CSE 54

who: Who are the users?
• The first column shows the usernames working on

the system.

• The second column shows the device names of their
respective terminals.

• The third , fourth and fifth columns show date and
time of logging in.

• The last column shows the machine name from
where the user logged in.

Dept of CSE 55

who: Who are the users?
• Most unix commands to avoid cluttering the display

with header information, this command does have a
header option (-H).

• This option prints the column headers, and when
combined with –u option, provides a more detailed
list.

Dept of CSE 56

whoami

Dept of CSE 57

•It is basically the concatenation of the strings “who”,”am”,”i” as whoami.

•It prints the username associated with the current effective userid when this

command is invoked.

• Synopsis:

$ whoami

whoami
 Commands related to whoami command are as

follows :
1. w — Show who is logged on and what they are doing.
2. who — Report which users are logged in to the
system.

Dept of CSE 58

uname: Knowing your machine’s characteristics

• It Prints system Information

• Synopsis: $ uname

Ex: $uname

output: linux # without any option it prints the kernel name

Dept of CSE 59

option Description

-a Print all information

-r It prints kernel release details

-m It prints machine details

-o It prints operating system details

-n To know the machine name user

Directory Handling Commands:
 pwd

 cd

 mkdir

 rmdir

Dept of CSE 60

Directory handling commands:
 Directory handling commands are used for working

with directories in UNIX.

 The typical operations may include:

 Finding the path of current working directory.

 Creating a new directory.

 Changing or moving into the directories.

 Removing or deleting the directory.

Dept of CSE 61

pwd: print working Directory
 The pwd command is a command line utility for

printing the current working directory.

 It will print the full system path of the current working
directory to standard output.

 $pwd

/home/cse

Dept of CSE 62

mkdir: make directory
mkdir: This command can be used to create a new directory.

Syntax:

 $ mkdir DIRECTORY_NAME

 1. How to create a directory

 $ mkdir mydir

 $ls

mydir

2. How to create multiple directory

 $ mkdir dir1 dir2 dir3 # creates three directories “dir1”, “dir2” and “dir3”

 $ls

 dir1 dir2 dir3

Dept of CSE 63

mkdir: make directory (contd…)
 3. How to create parent directory: 2 ways

 a) without using option

$mkdir maindir

$cd maindir

$mkdir sub1

$cd sub1

$mkdir sub2

$tree maindir

 b)use the –p option

 $mkdir –p maindir/sub1/sub2

 $tree maindir

Dept of CSE 64

cd: change directory
 cd (change directory) command is used to change the

present working directory to the ‘directory’ specified.

Syntax:

$ cd <directory name>

$ cd jncs

The above command is used to change the current working
directory to “jncs”.

Dept of CSE 65

rmdir: removing a directory
 rmdir command will delete the empty directories. i.e

directory without any sub-directories or files:

 Syntax:

$ rmdir <directory name>

Example 1:

$ rmdir jncs #removes the directory named “jncs”

Example-2: To Delete Nested Empty Directories in Linux:

 $ rmdir -p dir1/dir2/dir3

Dept of CSE 66

File Handling Utilities
 cat

 touch

 cp

 ls

 rm

 mv

 nl

 pg

 Tar

 wc

Dept of CSE 67

File Handling Utilities (Contd…) –touch command

 1. Creating Files:

a) touch b)cat

a) touch: By using this command we can create several empty files

quickly. It also changes file timestamps.

Synopsys: $ touch filename(s)

Example1: $touch sample

Example2: $touch sample1 sample2 sample3 sample4

Dept of CSE 68

File Handling Utilities (Contd…) - cat command
b)cat:

• The word cat refers to concatenation.

• We can create a file with some content.

• This command is used in appending the contents of one or
more files as described at the command prompt.
• Synopsys: $ cat options inputfile(s)

• To create a file:

$cat >test

Hi

Hello

presss ctrl+d [EOF (or) end of file character]

• To display the “test” file contents use:

$cat test

Hi

Hello
Dept of CSE 69

File Handling Utilities (Contd…)
 uptonow we are seeing the two cases of cat command:

1. create a new file

2. Display the contents of an existing file

• Redirection Operators:
-Most Unix system commands take input from your terminal and send the
resulting output back to your terminal. A command normally reads its input
from the standard input, which happens to be your terminal by default.
Similarly, a command normally writes its output to standard output, which is
again your terminal by default.

-Redirection is nothing but the file output is located to the destination file.

Dept of CSE 70

Redirection operators Description

< It refers to redirecting the standard input

> It refers to redirecting the standard output

>> It refers to appending output redirection
operator

File Handling Utilities (Contd…) - cat command
• cat command concatenates the contents of two files

and store them in the third file:
• $cat sample1 sample2 sample3 > newsample

•Append output redirection operator(>>):
$cat sample1 sample2 sample3 >> newsample

Dept of CSE 71

Option Description

-e printing the dollar symbol ($) at the end of each line.

-n Displaying the numbering in output

-v To display non-printable characters

Options:

File Handling Utilities (Contd…) - cp command

 cp command:
• This command is used to copy files or group of files or directory.

• It creates an exact image of a file on a disk with different file name.

• cp command require at least two filenames in its arguments.

Synopsys:
• $cp [OPTION] Source Destination

• cp [OPTION] Source Directory

• cp [OPTION] Source-1 Source-2 Source-3 Source-n Directory

Examples:

Dept of CSE 72

copy the contents of 1st file to the 2nd file copy the contents of 1st file and 2nd file to the

directory

Dept of CSE 73

 cp command options:

File Handling Utilities (Contd…) - cp command

Option Description

-i Interactive copying. Ex: Overwrite (Y/N)

-r (or)-R Recursively Copying directory structures

-b creates the backup of the destination file in the same folder
with the different name and in different format.

-f Copy the files and directory forcefully

Using –i option Using –b option

File Handling Utilities (Contd…) - cp command

Dept of CSE 74

Using –f option

Using –r option

 mv command:
mv stands for move. mv is used to move one or more files or directories
from one place to another in file system like UNIX. It has two distinct
functions:

(i) It rename a file or folder.
(ii) It moves group of files to different directory. tem like UNIX.

No additional space is consumed on a disk during renaming. This command
normally works silently means no prompt for confirmation.

Synopsys:
• $mv [OPTION] Source Destination

• $mv [OPTION] Source Directory

• $mv [OPTION] Directory Source

Example 1:

1. $mv sample sample1

If the destination file doesn’t exist, it will be created. If the destination file exist, then it will

be overwrite and the source file will be deleted. By default, mv doesn’t prompt for overwriting the existing
file, So be careful

Dept of CSE 75

File Handling Utilities (Contd…) - mv command

 mv command options

Dept of CSE 76

Option Description

-i Interactive confirmation of overwrites. Ex: Overwrite (Y/N)

-r (or)-R Recursively moving directory structures

-b backup of an existing file that will be overwritten as a result of
the mv command. This will create a backup file with the tilde
character(~) appended to it.

-f moving the files and directory forcefully

File Handling Utilities (Contd…) - mv command

 rm - remove files or directories. By default, it does not
remove directories.

Synopsys:
• $rm [OPTION] filename(s)

Example: Let us consider 5 files having name a.txt, b.txt and so on till e.txt.

Dept of CSE 77

File Handling Utilities (Contd…) - rm command

Examples:

1.$rm xyz

2.$rm f1 f2 f3 f4 f5

3. $rm a*.c

4. $rm a?.c

5. $rm a[0-9]*.c

6. $rm a[!A-Z a-z 0-9]*.c

Dept of CSE 78

Option Description

-i Interactive deletion. Ex: Overwrite (Y/N)

-r (or)-R Recursive Deletion. delete all the files and sub-directories recursively of the parent
directory. At each stage it deletes everything it finds. Normally, rm wouldn’t delete the
directories but when used with this option, it will delete.

-f Force deletion. rm prompts for confirmation removal if a file is write protected.

The -f option overrides this minor protection and removes the file forcefully.

File Handling Utilities (Contd…) - rm command

The ls command:
 The ls command is used to get a list of files and

directories.

 Options can be used to get additional information
about the files.

 Syntax:

$ls [options] [path(s)/filename(s)]

Dept of CSE 79

Options of ls Command:
 The ls command supports the following options:

 ls -a: list all files including hidden files. These are files that start with “.”.

 ls -A: list all files including hidden files except for “.” and “..” – these refer
to the entries for the current directory, and for the parent directory.

 ls -R: list all files recursively, descending down the directory tree from the
given path.

 ls -l: list the files in long format i.e. with an index number, owner name,
group name, size, and permissions.

 ls – o: list the files in long format but without the group name.

 ls -g: list the files in long format but without the owner name.

 ls -i: list the files along with their index number.

 ls -s: list the files along with their size.

 ls -t: sort the list by time of modification, with the newest at the top.

 ls -S: sort the list by size, with the largest at the top.

 ls -r: reverse the sorting order.

Dept of CSE 80

The nl (numbering lines) command:
 The nl command is a command line text formatting utility in UNIX.

 It's main purpose is to display line numbers of a file or standard input.

 Syntax:

$ nl [Options] filename

 Using Styles (-b)

 There are three output styles to choose from:

 a = Number all lines

 t = Number only nonempty lines

 n = Number no Lines

 p = Number only lines that contain a match for the basic regular
expression

By default the nl command uses the (t) style and numbers only
nonempty lines.

Dept of CSE 81

The nl (numbering lines) command:

 Changing the Starting Line Number

 You can change the starting line number by using the -v
option followed by the number you wish to start with.

 Example:

$ nl -v 77 file1.txt

the above command numbers the contents of file1.txt
starting from 77.

-i option, line number increment at each line

Example:

$nl -i2 file1.txt //increments the line number by 2.

Dept of CSE 82

The pg (page) command: browse page wise through text
files

 pg displays a text file on a CRT one screenful at once.
After each page, a prompt is displayed.

 The user may then either press the newline key to view
the next page or one of the keys described below.

 If no filename is given on the command line, pg reads
from standard input.

 Syntax:

pg [options] [+/Pattern/] [file_name]

Dept of CSE 83

Options of pg command:

Dept of CSE 84

Sub-commands of pg Command:

Dept of CSE 85

The tar (tape archive) Command:
 “tar” stands for tape archive, which is used by large

number of Linux/Unix system administrators to deal
with tape drives backup.

 The tar command used to rip a collection of files and
directories into highly compressed archive file
commonly called tarball.

 The tar is most widely used command to create
compressed archive files and that can be moved easily
from one disk to another disk or machine to machine.

Dept of CSE 86

Create tar Archive File

 The below example command will create a tar archive
file sample.tar for a directory /home/jncs in current
working directory.

tar -cvf sample.tar /home/jncs/

 c – Creates a new .tar archive file.

 v – Verbosely show the .tar file progress.

 f – File name type of the archive file.

Dept of CSE 87

The wc (word count) command:
 This command can be used to get a count of the total number of lines,

words, and characters contained in a file.

 Syntax:

$wc FILENAME

 Case 1:

 Example:

$ cat P1.c

WELCOME // contents of P1.c

TO

UNIX

$ wc P1.c

 LINE WORD CHARATCTER FILENAME

3 3 15 P1.c

Dept of CSE 88

The wc (word count) command:
 The header includes the following attributes:

 LINE

This represents the total number of lines in the file.

 WORD

This represents the total number of words in the file
(excluding space, tab and newline).

 CHARATCTER

This represents the total number of characters in the file
(including space, tab and newline).

 FILENAME

This represents the name of the file.
Dept of CSE 89

The wc command:
 Case 2:

 This command can also accept more than one filename
as arguments.

 Example:

$ wc p1.txt p2.txt

The above command displays the output as:

3 3 15 p1.txt

4 5 20 p2.txt

Dept of CSE 90

Displaying Commands:
 more

 head

 tail

Dept of CSE 91

The more command:
 more command is used to view the text files in the

command prompt, displaying one screen at a time in
case the file is large

 The more command also allows the user do scroll up
and down through the page.

 Another application of more is to use it with some
other command after a pipe (|).

 When the output is large, we can use more command
to see output one by one.

Dept of CSE 92

The more command:
 Syntax:

$more [-options] [-num] [+/pattern] [+linenum]
[file_name]
 [-options]: any option that you want to use in order to change

the way the file is displayed. Choose any one from the followings:
(-d, -l, -f, -p, -c, -s, -u)

 [-num]: type the number of lines that you want to display per
screen.

 [+/pattern]: replace the pattern with any string that you want to
find in the text file.

 [+linenum]: use the line number from where you want to start
displaying the text content.

 [file_name]: name of the file containing the text that you want
to display on the screen.

Dept of CSE 93

The more command:
 While viewing the text file use these controls:

Enter key: to scroll down line by line.
Space bar: To go to the next page.
b key: To go to back one page.

 Options:

 -d : Use this command in order to help the user to
navigate.

 It displays “[Press space to continue, ‘q’ to quit.]” and
displays “[Press ‘h’ for instructions.]” when wrong key is
pressed.

 Example:
$more -d sample.txt

Dept of CSE 94

The more command: options
 -f : This option does not wrap the long lines and displays

them as such.

 Example:

$more -f sample.txt

 -p : This option clears the screen and then displays the text.

 Example:

$more -p sample.txt

 -c : This option is used to display the pages on the same
area by overlapping the previously displayed text.

 Example:

$more -c sample.txt

Dept of CSE 95

The more command: options
 -s : This option squeezes multiple blank lines into one

single blank line.

 Example:

$more -s sample.txt

 -u : This option omits the underlines.

 Example:

$more -u sample.txt

 +/pattern : This option is used to search the string inside
your text document. You can view all the instances by
navigating through the result.

 Example:

$more +/reset sample.txt

Dept of CSE 96

The more command: options
 +num : This option displays the text after the specified

number of lines of the document.

 Example:

$more +30 sample.txt

 Using more to Read Long Outputs: We use more
command after a pipe to see long outputs.

 For example, seeing log files, etc.

$cat a.txt | more

Dept of CSE 97

The head command:
 This command is used to display the top of the file.

 By default, it displays the first 10 lines of the file.

 It is mainly useful to verify the contents of a file.

 Syntax:

$head [count option] filename

 Example:

$head state.txt # displays first 10 lines of state.txt

 Displaying first n lines of a file (-n)

 -n option is used to specify a line count and to display the first n lines
of the file.

 Example:

$ head -n 3 state.txt // displays first 3 lines of state.txt

Dept of CSE 98

The head command: Options

Dept of CSE 99

The head command: options
1. -n num: Prints the first ‘num’ lines instead of first 10
lines. num is mandatory to be specified in command
otherwise it displays an error.

$ head -n 5 state.txt

2. -c num: Prints the first ‘num’ bytes from the file
specified. Newline count as a single character, so if head
prints out a newline, it will count it as a byte. num is
mandatory to be specified in command otherwise
displays an error.

$ head -c 6 state.txt

Dept of CSE 100

The head command : options
 3. -q: It is used if more than 1 file is given. Because of

this command, data from each file is not precedes by
its file name.

$ head -q state.txt capital.txt

4. -v: By using this option, data from the specified file is
always preceded by its file name.

$ head -v state.txt

Dept of CSE 101

The tail command:
 The tail command, as the name implies, print the last

N number of data of the given input.

 By default it prints the last 10 lines of the specified
files.

 If more than one file name is provided then data from
each file is precedes by its file name.

 Syntax:

$tail [OPTION]... [FILE]...

Dept of CSE 102

The tail command: options

Dept of CSE 103

The tail command: options
 1. -n num: Prints the last ‘num’ lines instead of last 10

lines. num is mandatory to be specified in command otherwise
it displays an error.

 This command can also be written as without symbolizing ‘n’
character but ‘-‘ sign is mandatory.

$ tail -n 3 state.txt (or)

$ tail -3 state.txt

•Tail command also comes with an ‘+’ option which is not present
in the head command.

•With this option tail command prints the data starting from
specified line number of the file instead of end.

•For command: tail +n file_name, data will start printing from
line number ‘n’ till the end of the file specified.

Dept of CSE 104

The tail command: options
 2. -c num: Prints the last ‘num’ bytes from the file

specified.

 Newline count as a single character, so if tail prints out a
newline, it will count it as a byte.

 In this option it is mandatory to write -c followed by positive
or negative num depends upon the requirement.

 By +num, it display all the data after skipping num bytes
from starting of the specified file and by -num, it display the
last num bytes from the file specified.

 With negative num :

$ tail -c -6 state.txt (or) $ tail -c 6 state.txt

With positive num :

$ tail -c +6 state.txt

Dept of CSE 105

The tail command: options
 3. -q: It is used if more than 1 file is given. Because of this

command, data from each file is not precedes by its file
name.

$ tail -q state.txt capital.txt

• 4. -f: This option is mainly used by system administration
to monitor the growth of the log files written by many Unix
program as they are running.

This option shows the last ten lines of a file and will update
when new lines are added.

As new lines are written to the log, the console will update
with the new lines.

$ tail -f logfile

Dept of CSE 106

The tail command: options
5. -v: By using this option, data from the specified file is

always preceded by its file name.

$ tail -v state.txt

6. –version: This option is used to display the version of tail
which is currently running on your system.

$ tail --version

Dept of CSE 107

Simple filters and Commands:
 Filters are programs that take plain text(either stored

in a file or produced by another program) as standard
input, transforms it into a meaningful format, and
then returns it as standard output.

 UNIX has a number of filters.

 Examples for filtering commands are:

 cat diff cut

 head sort uniq

 tail wc nl

 cmp grep sed

 comm

Dept of CSE 108

The cmp (compare) command:
 cmp command in Linux/UNIX is used to compare the

two files byte by byte and helps you to find out
whether the two files are identical or not.

 When cmp is used for comparison between two files, it
reports the location of the first mismatch to the screen if
difference is found and if no difference is found i.e the
files compared are identical.

 cmp displays no message and simply returns the prompt
if the the files compared are identical.

 Syntax: $cmp options... FromFile [ToFile]

Dept of CSE 109

The cmp command: Example
 $cmp file1.txt file2.txt If the files are not identical :

 the output of the above command will be :

$cmp file1.txt file2.txt

file1.txt file2.txt differ: byte 9, line 2

/*indicating that the first mismatch found in two files at byte
20 in second line*/

 If the files are identical :

 you will see something like this on your screen:

$cmp file1.txt file2.txt

$ _

/*indicating that the files are identical*/

Dept of CSE 110

The cmp command: options
 1. -b(print-bytes) : If you want cmp displays the

differing bytes in the output when used with -
b option.

 $cmp -b file1.txt file2.txt

file1.txt file2.txt differ: 12 byte, line 2 is 154 l 151 i

2. -i [bytes-to-be-skipped] : Now, this option when used with cmp
command helps to skip a particular number of initial bytes
from both the files and then after skipping it compares the files.

$cmp -i 10 file1.txt file2.txt

$_

/*indicating that both files are identical after 10 bytes skipped from
both the files*/

Dept of CSE 111

The cmp command: options
 3. -i [bytes to be skipped from first file] : [bytes to be skipped from second

file] :

This option is very much similar to the above -i [bytes
to be skipped] option but with the difference that now
it allows us to input the number of bytes we want
to skip from both the files separately.

$cmp -i 10:12 file1.txt file2.txt

$_

/*indicating that both files are identical after 10
bytes skipped from first file and 12 bytes skipped
from second file*/

Dept of CSE 112

The cmp command: options
 4. -l option : This option makes the cmp command

print byte position and byte value for all differing
bytes.

$cmp -l file1.txt file2.txt

5. -s option : This allows you to suppress the output
normally produced by cmp command i.e it compares
two files without writing any messages.

This gives an exit value of 0 if the files are identical, a
value of 1 if different, or a value of 2 if an error message
occurs.

$cmp -s file1.txt file.txt
Dept of CSE 113

The cmp command: options
 6. -n [number of bytes to be compared] option :

This option allows you to limit the number of bytes
you want to compare ,like if there is only need to
compare at most 25 or 50 bytes.

$cmp -n 50 file1.txt file2.txt

$_

/*indicating files are identical for starting 50 bytes*/

Dept of CSE 114

The comm (common) command:

 comm compare two sorted files line by line and write
to standard output; the lines that are common and the
lines that are unique.

 Syntax :

$comm [OPTION]... FILE1 FILE2

$comm file1.txt file2.txt

Dept of CSE 115

The comm command: options
 Options for comm command:

1. -1 :suppress first column(lines unique to first file).
2. -2 :suppress second column(lines unique to second file).
3. -3 :suppress third column(lines common to both files).
4. – -check-order :check that the input is correctly sorted,
even if all input lines are pairable.
5. – -nocheck-order :do not check that the input is
correctly sorted.
6. – -help :display a help message, and exit.
7. – -version :output version information, and exit.

Dept of CSE 116

The diff (difference) command:
 Diff command in Linux is used to compare the content of two files line

by line and if the difference is found then it will also list differences
along with line numbers.

 Syntax:

$ diff <options> file1 file2

 Output of diff command can be in following format:

 Normal (default)

 Context

 Unified

 Symbols used in diff command output are:

 a -> it indicates that something has been added

 c -> it indicates that some text has been changed

 d -> it indicates some text has been deleted

Dept of CSE 117

The diff command: Options
 By default, diff command output is in normal format, it

means when contents of two files are identical then it will
not produce any output but we will get the prompt.

 UNIX system offers two different ways to view
the diff command output :

 context mode

 unified mode.

1. -c (context) : To view differences in context mode, use the -c option.

$ diff -c file1.txt file2.txt

Dept of CSE 118

The diff command: Options
 -u (unified) : To view differences in unified mode, use

the -u option. It is similar to context mode but
it doesn’t display any redundant information or it
shows the information in concise form.

$ diff -u file1.txt file2.txt

• -i : By default this command is case sensitive. To make
this command case in-sensitive use -i option with diff.

$ diff -i file1.txt file2.txt

• –version : This option is used to display the version
of diff which is currently running on your system.$ diff
--version

Dept of CSE 119

The cut command:
 The cut command in UNIX is a command for cutting

out the sections from each line of files and writing the
result to standard output.

 It can be used to cut parts of a line by byte position,
character and field.

 Basically the cut command slices a line and extracts
the text.

 Syntax:

$cut OPTION... [FILE]...

It is necessary to specify option with command otherwise
it gives error.

Dept of CSE 120

The cut command: options

 1. -b(byte): To extract the specific bytes, you need to
follow -b option with the list of byte numbers
separated by comma.

 Range of bytes can also be specified using the
hyphen(-).

 List without ranges

$ cut -b 1,2,3 state.txt

• List with ranges

$ cut -b 1-3,5-7 state.txt

Dept of CSE 121

The cut command: options
 2. -c (column): To cut by character use the -c option.

This selects the characters given to the -c option.

 This can be a list of numbers separated comma or a
range of numbers separated by hyphen(-).

$ cut -c 2,5,7 state.txt

$ cut -c 1-7 state.txt

Dept of CSE 122

The paste command:
 Paste command is one of the useful commands in Unix or

Linux operating system.

 It is used to join files horizontally (parallel merging) by
outputting lines consisting of lines from each file specified,
separated by tab as delimiter, to the standard output.

 When no file is specified, or put dash (“-“) instead of file
name, paste reads from standard input and gives output as
it is until a interrupt command [Ctrl-c] is given.

 Syntax:
$paste [OPTION]... [FILES]...

Dept of CSE 123

The paste command: options
 1. -d (delimiter): Paste command uses the tab

delimiter by default for merging the files.

 The delimiter can be changed to any other character by
using the -d option.

 If more than one character is specified as delimiter
then paste uses it in a circular fashion for each file line
separation.

 Only one character is specified

$ paste -d "|" number state capital

More than one character is specified

$ paste -d "|," number state capital

Dept of CSE 124

The paste command: options
 2. -s (serial): We can merge the files in sequentially

manner using the -s option.

 It reads all the lines from a single file and merges all
these lines into a single line with each line separated
by tab.

 And these single lines are separated by newline.

$ paste -s number state capital

Dept of CSE 125

The sort command:
 SORT command is used to sort a file, arranging the records in a particular

order.

 By default, the sort command sorts file assuming the contents are ASCII.
Using options in sort command, it can also be used to sort numerically.

 SORT command sorts the contents of a text file, line by line.

 sort is a standard command line program that prints the lines of its input or
concatenation of all files listed in its argument list in sorted order.

 The sort command is a command line utility for sorting lines of text files. It
supports sorting alphabetically, in reverse order, by number, by month and can
also remove duplicates.

 The sort command can also sort by items not at the beginning of the line,
ignore case sensitivity and return whether a file is sorted or not. Sorting is done
based on one or more sort keys extracted from each line of input.

 By default, the entire input is taken as sort key. Blank space is the default field
separator.

Dept of CSE 126

The sort command:
 The sort command follows these features as

stated below:

 Lines starting with a number will appear before lines
starting with a letter.

 Lines starting with a letter that appears earlier in the
alphabet will appear before lines starting with a letter
that appears later in the alphabet.

 Lines starting with a lowercase letter will appear before
lines starting with the same letter in uppercase.

 Syntax :

$ sort filename.txt
Dept of CSE 127

The sort command: options
 -o Option : Unix also provides us with special facilities

like if you want to write the output to a new file,
output.txt, redirects the output like this or you can also
use the built-in sort option -o, which allows you to
specify an output file.
Using the -o option is functionally the same as
redirecting the output to a file.

 Syntax :

$ sort inputfile.txt > filename.txt

$ sort -o filename.txt inputfile.txt

Dept of CSE 128

The sort command: options
 -r Option: Sorting In Reverse Order : You can

perform a reverse-order sort using the -r flag. the -r
flag is an option of the sort command which sorts the
input file in reverse order i.e. descending order by
default.

 Syntax:

$ sort -r inputfile.txt

Dept of CSE 129

The sort command: options
 -n Option : To sort a file numerically use –n option.

 This option is used to sort the file with numeric data
present inside.

 Syntax :

$ sort -n filename.txt

-nr option : To sort a file with numeric data in reverse
order we can use the combination of two options.

$ sort -nr filename.txt

Dept of CSE 130

The uniq command:
 The uniq command in Linux is a command line utility

that reports or filters out the repeated lines in a file.

 In simple words, uniq is the tool that helps to detect
the adjacent duplicate lines and also deletes the
duplicate lines.

 uniq filters out the adjacent matching lines from the
input file(that is required as an argument) and writes
the filtered data to the output file .

 Syntax:

$uniq [OPTION] [INPUT[OUTPUT]]

Dept of CSE 131

The uniq command: options
 c – -count : It tells how many times a line was repeated by displaying a

number as a prefix with the line.

 -d – -repeated : It only prints the repeated lines and not the lines
which aren’t repeated.

 -f N – -skip-fields(N) : It allows you to skip N fields(a field is a group
of characters, delimited by whitespace) of a line before determining
uniqueness of a line.

 -i – -ignore case : By default, comparisons done are case sensitive but
with this option case insensitive comparisons can be made.

 -s N – -skip-chars(N) : It doesn’t compares the first N characters of
each line while determining uniqueness. This is like the -f option, but
it skips individual characters rather than fields.

 -u – -unique : It allows you to print only unique lines.

 -w N – -check-chars(N) : It only compares N characters in a line.

Dept of CSE 132

The tr (translate) command:
 The tr command in UNIX is a command line utility for

translating or deleting characters.

 It supports a range of transformations including
uppercase to lowercase, squeezing repeating
characters, deleting specific characters and basic find
and replace.

 Syntax :
$ tr [OPTION] SET1 [SET2]

Dept of CSE 133

The tr command: options
 -c : complements the set of characters in string.i.e.,

operations apply to characters not in the given set.

 -d : delete characters in the first set from the output.

 -s : replaces repeated characters listed in the set1 with
single occurrence

 -t : truncates set1

Dept of CSE 134

The tr command: Examples
 How to convert lower case to upper case:

$cat filename | tr “[a-z]” “[A-Z]”

$cat filename | tr “[:lower:]” “[:upper:]”

• How to translate white-space to tabs

$ echo "Welcome To UNIX" | tr [:space:] '\t‘

Dept of CSE 135

find command
• This command is used to locate files in the unix

directory tree.

• It searches the named dir’s and its subdir’s for files.

• Most frequently called like this;

$ find ./ -name “t*” -print

• Examples:

1. $ find . -name sample -print

2. $ find . -name [ab]* -print

•To search Dir’s called backup from /usr dir :

$find /usr –type d –name backup -print

Dept of CSE 136

find command contd…
•To search normal files called backup from /usr dir :

$find /usr –type f –name backup -print

$find /usr –type c –name backup -print

$find /usr –type b –name backup -print

•To search root dir downwards all files which have
exactly 2 links:

•$find / -links 2 -print

•$find / -links -2 -print

•$find / -links +2 -print

Dept of CSE 137

finger command:
 finger command is a user information lookup

command which gives details of all the users logged in.

 This tool is generally used by system
administrators.

 It provides details like login name, user name, idle
time, login time, and in some cases their email address
even.

 Examples:

 To finger or get details of a user.

$finger cse

 To get idle status and login details of a user.

$finger -s cse

Dept of CSE 138

Disk Utilities: du, df, mount, umount

 A disk utility is a utility program that allows a user to
perform various functions on a computer disk, such as:

 disk partitioning and logical volume management

 changing drive letters and other mount points

 renaming volumes

 disk checking

 disk formatting

 which are otherwise handled separately by multiple
other built-in commands.

Dept of CSE 139

du (disk usage) command:
 This command displays disk usage (usually in

multiplies of 1k blocks).

 Du command without any argument displays disk
usage of all files, sub dir’s of current working dir.

 Syntax :

$du [OPTION]... [FILE]...

Example:

$du dirname

$du filename

Dept of CSE 140

The du command: options
 -0, –null : end each output line with NULL

 -a, –all : write count of all files, not just directories

 -B, –block-size=SIZE : scale sizes to SIZE before printing on
console

 -c, –total : produce grand total

 -d, –max-depth=N : print total for directory only if it is N or fewer
levels below command line argument

 -h, –human-readable : print sizes in human readable format

 -S, -separate-dirs : for directories, don’t include size of
subdirectories

 -s, –summarize : display only total for each directory

 –time : show time of last modification of any file or directory.

 –exclude=PATTERN : exclude files that match PATTERN
Dept of CSE 141

df (disk free)command:

 The df command (short for disk free), is used to
display information related to file systems about total
space and available space.

 Syntax :
$df [OPTION]... [FILE]...

 If no file name is given, it displays the space available
on all currently mounted file systems.

Dept of CSE 142

The df command: options
 -a, –all : includes pseudo, duplicate and inaccessible file

systems.

 -B, –block-size=SIZE : scales sizes by SIZE before printing
them.

 -h, –human-readable : print sizes in power of 1024

 -H, –si: print sizes in power of 1000

 -i, –inodes : list inode information instead of block usage

 -l, –local : limit listing to local file systems

 –total : elide all entries insignificant to available space, and
produce grand total

 -t, –type=TYPE : limit listing to file systems of type TYPE

 -T, –print-type : print file system type

Dept of CSE 143

The mount and umount commands:
 All files in a UNIX/Linux filesystem are arranged in form

of a big tree rooted at ‘/‘.

 These files can be spread out on various devices based on
your partition table, initially your parent directory is
mounted(i.e attached) to this tree at ‘/‘, others can be
mounted manually using GUI interface(if available) or
using mount command.

 mount command is used to mount the filesystem found
on a device to big tree structure(Linux filesystem) rooted
at ‘/‘.

 Conversely, another command umount can be used to
detach these devices from the Tree.

Dept of CSE 144

The mount and umount commands:
 Syntax:

$mount -t type device dir

 Some Important Options:
 l : Lists all the file systems mounted yet.

 h : Displays options for command.

 V : Displays the version information.

 a : Mounts all devices described at /etc/fstab.

 t : Type of filesystem device uses.

 T : Describes an alternative fstab file.

 r : Read-only mode mounted.

 Syntax for umount:

$umount devicedir

Dept of CSE 145

Process utilities: ps, kill
 The process utilities in UNIX are used for performing

process management tasks like:

 Creating a process.

 Executing the process.

 Knowing the status of the process.

 Terminating or killing the process.

Dept of CSE 146

ps (process status) command:
 ps command is used to list the currently running

processes and their PIDs along with some other
information depends on different options.

 Syntax:

$ps [options]

 Simple process selection : Shows the processes for
the current shell –

$ ps
PID TTY TIME CMD

12330 pts/0 00:00:00 bash

21621 pts/0 00:00:00 ps

Dept of CSE 147

The ps command
 Result contains four columns of information.

Where,
PID – the unique process ID
TTY – terminal type that the user is logged into
TIME – amount of CPU in minutes and seconds that the
process has been running
CMD – name of the command that launched the process.

 View Processes : View all the running processes use
either of the following option with ps –

$ps –A

$ ps -e

Dept of CSE 148

The ps command: options
 View all processes associated with this terminal :

$ps -T

 View all the running processes:

$ps -r

 View all processes owned by you :

Processes i.e same EUID as ps which means runner of
the ps command

$ps -x

Dept of CSE 149

The kill command:

 kill command in UNIX/Linux, is a built-in command
which is used to terminate processes manually.

 kill command sends a signal to a process which
terminates the process.

 To kill a particular process, we use the pid of that
process as:

$kill <pid of the process to be terminated/killed>

Dept of CSE 150

Networking utilities: ping,telnet,rlogin,ftp

 Networking is an essential part of Unix and it offers
lots of tools and commands to diagnose any
networking problem.

 These utilities enables you to quickly troubleshoot
connection issues.

 Example:

 whether another system is connected or not

 whether another host is responding or not

Dept of CSE 151

The ping command:
 PING (Packet Internet Groper) command is used to check

the network connectivity between host and server/host.

 This command takes as input the IP address or the URL and
sends a data packet to the specified address with the
message “PING” and get a response from the server/host this
time is recorded which is called latency.

 Fast ping low latency means faster connection.

 Ping uses ICMP(Internet Control Message Protocol) to
send an ICMP echo message to the specified host if that
host is available then it sends ICMP reply message.

 Ping is generally measured in millisecond every modern
operating system has this ping pre-installed.

 The syntax for ping command is:

$ping ipaddress (or)url

Dept of CSE 152

The telnet command:
The telnet program is a user interface to
the TELNET protocol.

 The telnet command is used
for interactive communication with another host using
the TELNET protocol. It begins in command mode,
where it prints a telnet command prompt ("telnet>").

 If telnet is invoked with a host argument, it performs
an open command implicitly.

 Syntax

$telnet [-468ELadr] [-S tos] [-b address] [-e escapechar] [-l user]
[-n tracefile] [host [port]]

Dept of CSE 153

The telnet command: options
 -4Force IPv4 address resolution.

 -6Force IPv6 address resolution.

 -8Request 8-bit operation.

 -EDisables the escape character functionality.

 -LSpecifies an 8-bit data path on output.

 -aAttempt automatic login.

 -b addressUse bind on the local socket to bind it to a specific local
address.

 -rEmulate rlogin.

 -S tosSets the IP TOS (type-of-service) option for
the telnet connection to the value tos.

 hostSpecifies a host to contact over the network.

 portSpecifies a port number or service name to contact. If not
specified, the telnet port (23) is used.

Dept of CSE 154

The rlogin (remote login) command:

 The “rlogin” command is similar to telnet. The rlogin
starts a terminal session on a remote host.

 Syntax :
$rlogin hostname

 Example :
$ rlogin jncs
Password:
Last login: Mon Jul 13 11:41:38 on pts/1

Dept of CSE 155

The ftp command:
 ftp is the user interface to the Internet standard File

Transfer Protocol.

 The program allows a user to transfer files to and from
a remote network site.

 Syntax:

$ftp [-pinegvd] [host]

Dept of CSE 156

The ftp command: options
 -A Use active mode for data transfers.

 -p Use passive mode for data transfers.

 -i Turns off interactive prompting during multiple
file transfers.

 -4 Use only IPv4 to contact any host.

 -6 Use IPv6 only.

 -e Disables command editing and history support.

Dept of CSE 157

