

Unix Programming

UNIT-III

B.Tech(CSE)-V SEM

Dept of CSE 1

UNIT-III : INTRODUCTION TO SHELL PROGRAMMING

 CO3: Develop basic programs using shell script

Topics:

 -Shell Variables-The Export Command-The Profile File a Script Run
during Starting

 -The First Shell Script-The read Command

 -Positional parameters-The $? Variable knowing the exit Status

 -More about the Set Command-The Exit Command

 -Branching Control Structures-Loop Control Structures

 -The Continue and Break Statement

 -The Expr Command: Performing Integer Arithmetic-Real Arithmetic in
Shell Programs

 -The here Document(<<)-The Sleep Command

 -Debugging Scripts-The Script Command-The Eval Command-The Exec
Command.

 Command Line Structure- Metacharacters.

Dept of CSE 2

Shell and its Types:
 In UNIX and LINUX, a shell refers to a program that is used to

interpret the typed commands the user sends to the operating
system.

 The closest analogy in Windows is the DOS Command Prompt.

 However, unlike in Windows, Linux and UNIX computers allow
the user to choose what shell they would like to use.

 Types of Shells in UNIX/LINUX:

 Bourne Shell

 C-Shell.

 Korn Shell (K-Shell).

 Dept of CSE 3

Types of Shells:
 Bourne Shell:

 The original Bourne shell is named after its developer at Bell Labs,
Steve Bourne. It was the first shell used for the UNIX operating
system, and it has been largely surpassed in functionality by many of
the more recent shells. The shell prompt is $, Execution command is
sh.

 C Shell:
 Designed by Bill Joy at the University of California at Berkeley .The C

shell, as its name might imply, was designed to allow users to write
shell script programs using syntax very similar to that of the C
programming language. The shell prompt is % and execution
command "csh.”

 It has two advantages over the Bourne shell.

• Aliasing of commands

• History Commands

Dept of CSE 4

Types of Shells(Contd..)

3. Korn Shell: It is a superset of Bourne shell. It offers a lot
more capabilities and is decidedly more efficient than the
other. It was designed to be so by David Korn of AT&T’s
Bell Labs.

 The Korn shell prompt is $ and execution command ksh.

Dept of CSE 5

Shell Variables
 Variable is data name and it is used to store value.

Variable value can change during execution of
program.

Variables are 2 types:
1) Environment variables / System variables/unix defined

variables

2) User defined variables.

Dept of CSE 6

Environment Variables
 Environmental variables are used to provide information to the

programs you use.

 These variables control the behavior of the system.

 They determine the environment in which the user works.

 If environment variables are not set properly, the users may not be able
to use some commands.

 Environment variables are so called because they are available in the
user's total environment i.e. the sub-shells that run shell scripts and
mail commands and editors.

 Some variables are set by the system, others by the users, others by the
shell programs.

 env command can be used to display environment variables.

 Dept of CSE 7

Environment Variables (Contd..)
 HOME

 This variable indicates the home directory of the current user.

 This variable is set for a user by the system admin in /etc/passwd.

 Example: $echo $HOME

 PATH

 This variable specifies the locations in which the shell should look for
commands.

 Usually, the PATH variable can be set as follows:

 $PATH=/bin : /usr/bin

 PS1 and PS2
 The shell has 2 prompts:

 The primary prompt $ is the one the user normally sees on the monitor. $
is stored in PS1.

 The user can change the primary prompt as follows:

 $ PS1=“HELLO>”
 HELLO> //similar to windows

•The secondary prompt > is stored in PS2.

Dept of CSE 8

 LOGNAME

 This variable contains the users login name.

 Example:

 $echo $LOGNAME

 (or)

 $echo “${LOGNAME}”

 SHLVL
 This variable contains the shell level that you are currently working in.

 Example:

 $echo $SHLVL

 1

 $sh #new shell

 $echo $SHLVL

 2

 $exit

 $echo $SHLVL

 1

Dept of CSE 9

Environment Variables (Contd..)

 SHELL

 This variable specifies the current shell being used by the users.

 Different types of shells are:

 1)Bourne shell /bin/sh

 2) C-shell /bin/csh

 3) Korn shell /bin/ksh

 To see users default shell

 $echo $SHELL

 /bin/bash

 TERM

 This variable indicates the terminal type that is used.

 Every terminal has certain characteristics that are defined in a separate
control file in the terminfo directory.

 If TERM is not set correctly, vi will not work and the display will be faulty.

 env: we can use this to view a list of environment variables and their respective

values.

 $env

 Dept of CSE 10

Environment Variables (Contd..)

User defined Variables:
 A variable is a character string to which the user assigns a

value.

 The value assigned can be a number, text, filename, device,
or any other type of data.

 Syntax:

 <variable-name> = <value> # variable definition

 The value of variables are stored in the ASCII format.

 Example:

 $ x=50

 $ echo $x #displays 50

 In command line, all words that are preceded by a $ are
identified and evaluated as variables.

Dept of CSE 11

Uses of User defined Variables :
 Setting pathnames: If a pathname is used several times in

a script, we can assign it to a variable and use it as an
argument to any command.

 Using command substitution: We can assign the result
of execution of a command to a variable. The command to
be executed must be enclosed in backquotes (also called
accent grave).

 Example: $echo “Today’s date is `date` ”

 Concatenating variables and strings: Two variables can
be concatenated to form a new variable.

 Example:
 $ name=johny age=10

 $ echo $name $age # output: johny 10

 $echo Name of the boy is $name, and his age is $age

 output: Name of the boy is johny, and his age is 10

Dept of CSE 12

User defined Variables (Contd…)

unchanging variables: readonly function

 The values of which can only be read but not be
manipulated.

 Example:

 $a=20
 $ readonly a

 unset: To clear local environment variable is by using
unset command. To unset any local environment
variable temporarily,

 $unset <var-name>

Dept of CSE 13

export command:
 In shell programming, the values of the variables set or

changed in one program will not be available for other
programs.

 What ever the variable created in the current shell is local
variable to that shell.

 Example: (current shell)

 $name=rama

 $echo name

 $echo $name # output: rama

 $sh #newshell

 $echo $name # no output
 $ (ctrl+d) Exit from current shell and goes to parent shell

 $echo $name # output: rama

Dept of CSE 14

export command (Contd…)
 export: It is used to declare the variables as global. Making

variables to all the substantial shells. Its acts as a global
variable.

 Example: (current shell)

 $name=rama

 $export name

 $echo $name # output: rama

 $sh #newshell

 $echo $name # output: rama

 $name=sita

 $echo $name # output: sita

 $ (ctrl+d) Exit from current shell and goes to parent shell

 $echo $name # output: rama

Dept of CSE 15

Using –f option for exporting functions:

$name () { echo “hello”; }

• $export –f name

• $name

//prints “hello”

Dept of CSE 16

export command (Contd…)

 .profile file (a script run during starting)
 A profile file is a start-up file of an UNIX user.

 This file gets executed as soon as the user logs in.

 The .profile file is present in your home ($HOME) directory
and lets you customize your individual working
environment.

 However, the user can customize the profile as per their
requirement.

 i.e. The user can

 → assign suitable values to the environment variables.

 → add and modify statements in the profile file.

Dept of CSE 17

The .profile file:
.profile file controls the following by default:

 Shells to open

 Prompt appearance

 Keyboard Sound.

 The .profile file contains your individual profile that overrides the
variables set in the /etc/profile file.

 The user can view his ".profile" as follows:

Dept of CSE 18

Shell Programming: Introduction
 A shell script contains a list of commands which have to be executed

regularly.

 Collection of Unix Commands is called as Shell script.

 Shell script is also known as shell program.

 The user can execute the shell script itself to execute commands in it.

 A shell script runs in interpretive mode. i.e. the entire script is
compiled internally in memory and then executed.

 Hence, shell scripts run slower than the high-level language programs.

 ".sh" is used as an extension for shell scripts.

Dept of CSE 19

Shell Programming: Introduction (Contd…)

 The hash symbol # indicates the comments in the
script.

 The shell ignores all the characters that follow the #
symbol. However, this does not apply to the first line.

 The first line "#! /bin/sh" indicates the path where
the shell script is available.

Dept of CSE 20

The First Shell Script:
 The shell script or a shell program is a set of commands

that are executed together as a single unit.

 A shell script also includes:
 Commands for selective execution (Conditional statements).

 Commands for I/O operations like read and echo.

 Commands for repeated execution (loops).

 Shell variables and so…on.

 A shell script is named just like all other files with .sh
extension.

 A shell program runs in the interpretive mode.

Dept of CSE 21

Steps in creating Shell Script
1. Create a file using an vi editor (or any other editor) . Name

script file with extension .sh.

 vi

1. Start the script with #!/bin/bash

2. Write some code

3. Save the script file as filename.sh

4. Execute a shell script

 a) using sh command

 $sh filename.sh

 b) using chmod command

 $chmod u+x filename.sh

 $./filename.sh

Dept of CSE 22

Sample shell script:

Dept of CSE 23

$vi first.sh

Execute the

script using the

command:

$sh first.sh

Execution of shell script

can be done in two ways:

1. Using internal

command i.e; sh

.

2. Using external

command i.e;

chmod.

Comments in shell script:
 Comments are used to explain :

 The purpose and Logic of the program.

 Commands used in the program.

 The # symbol is used to represent the comments in
the shell script.

 Example:

 #This is a Comment Line.

 #This is my first shell program.

Dept of CSE 24

read and echo (Interactive Shell):

 The read command can be used for taking input from
the keyboard and echo to display output.

 It is shell’s internal tool for making scripts interactive.

 Syntax:

 read <var_name>

 It is used with one or more variables.

 The variables are used to hold inputs given with the
standard input.

 Dept of CSE 25

Example script for read command:

Dept of CSE 26

$vi example_read.sh Executing script using two

methods:

Multiple arguments using read command:

 The read command can take multiple arguments.

 In other words, values for more than one variable can
be assigned or input using a single read command.

 Example:

 read a b c

 Arguments are separated by space.

 If number of input values are less than the number of
arguments, then the arguments or variables to which
values are assigned will be initiated to null.

 Dept of CSE 27

readonly command:

 The readonly command can be used to make variables
readonly i.e. the user cannot change the value of
variables(Constants).

 During shell scripting, we may need a few variables,
which cannot be modified.

 This may be needed for security reasons.

 Syntax:
 readonly <var_name>=value

Dept of CSE 28

Example for readonly:

$ vi readonly_ex.sh $ sh readonly_ex.sh

Dept of CSE 29

Positional parameters/command line arguments:

 The arguments submitted with a shell script are called positional
parameters.

 The name of the command run (usually the name of the shell script
file) is put into a variable $0.

 The first argument (the 2nd word on the command line) is put into a
variable $1.

 The second argument (the 3rd word on the command line) is put into
a variable $2 and so on.

 The linux shell creates a maximum of 9 variables other than
$0.represented as:

 $0 $1 $2 $3 $4 $5 $6 $7 $8 $9

 The variables $1 through $9 are called positional parameters of the
command line. Depending on the number of arguments specified in
the command, the shell assigns values to some or all of these variables.

 Dept of CSE 30

Positional parameters / command line
arguments (Contd…)

Dept of CSE 31

$vi a.sh

OUTPUT

$#, $* and $@ Variables:
 Besides the variables , $0 to $9, the shell also assigns values
to the following special variables:
 $# : variable holds the count of the total number of parameters i.e; the

number of arguments. (It is similar to argc in c)

 $* : variable holds the list of all the arguments. (It is similar to argv[] in c)

 $@: similar to $*, but yields each argument separately when enclosed in
double quotes.

 $? : Exit status of last executed command.

 $$: ProcessID(PID) of current shell

 $! : PID of last background process.

 $0 : File name of current shell.

 When $* and $@ are used within quotes, the contents of $* is considered as
a single string whereas the contents of $@ are considered as independently
quoted and considered as independent string arguments.

Dept of CSE 32

Positional parameters / command line
arguments (Contd…)

 The $0 variable holds parameter number 0.

 It always represents the command or program to be executed.

Dept of CSE 33

Difference between $* and $@

Dept of CSE 34

$vi pos-para.sh

Output

 $? Variable (Knowing the exit status)
 Whenever a command is successfully executed, the program returns

0(Zero).

 If a command is not executed successfully, a value other than zero will
be returned.

 Logically, a ‘0’ is considered as true and a non-zero is considered as
false.

 These returned values are called program exit status.

 The program exit status will be available in shell special variable $?.

 An exit status value available in $? Is normally used in decision making
in shell programs.

Dept of CSE 35

Example on $? :

Dept of CSE 36

Here test is an existent file

Here sample is an non- existent

file

Example script on positional parameters:

$ vi pos_parameters.sh Output:

Dept of CSE 37

set command:
 The set command is used to assign the values to the

positional parameters on the command line.

 Example:

 $set India is my Country
 $echo $1 # displays India

 $echo $2 # displays is

 $echo $3 # displays my

 $echo $4 # displays country

 $echo $1 $4 # displays India Country

Dept of CSE 38

More about the set command:
 The set command with out arguments:

 When set command is used with out arguments, it displays the
contents of the system variables that are either local or exported.

 The set command with options:
 Many options such as –x,-v, -- and others are allowed to be used with

set command.

 The options –x and –v are used to debug shell scripts.

 The set command and the – option:
 Under certain circumstances, arguments to the set command are

passed on through command substitution which is error-prone.

 Such situation is handled using special option – (double-hyphen).

Dept of CSE 39

shift command:
 Only a maximum of 9 arguments are given in a command

line.

 In case, more than 9 arguments are given in command Line,
no error is indicated.

 Such type of situations are handled by shift command.

 In other words, shift command is used to handle excess
command Line arguments.

 Shift command is used to shift the position of positional
parameters.

Dept of CSE 40

exit command:
 The exit command is used to terminate the execution of the

script.

 It is also used to exit from the shell that is being used
currently.

 It is not necessary to use exit command at the end of every
shell script.

 The shell recognizes end of the script automatically.

 The exit command can optionally use a numeric value as an
argument (Eg: exit 0/1).

 A zero exit value indicates success and a non-zero value
indicates failure.

 If no arguments are used, this command returns a zero.

Dept of CSE 41

Operators in UNIX:
 An operator is a symbol that is used for arithmetic and

logical manipulations.

 The different operators in UNIX are:

1) Arithmetic operators.

2) Logical operators.

3) Relational operators.

Dept of CSE 42

Operation Symbol

Addition +

Subtraction -

Multiplication *

Division /

Modulus %

1) Arithmetic Operators:

• The expr command is used to carry out basic arithmetic
operations on integers.

• This command is used only when arithmetic operations are
simple and are few.

• This command combines the following two functions:
• Performs arithmetic operations on integers and

• Manipulates strings.

• For complex arithmetic operations, we can use UNIX
calculators like bc.

Dept of CSE 43

Operators in UNIX (Contd..)

Operation Symbol

Addition +

Subtraction -

Multiplication *

Division /

Modulus %

Dept of CSE 44

Example on Arithmetic Operators

$vi arthmetic.sh Output:

Operators in UNIX (Contd..)
2) Logical Operators:

 Logical AND and OR operations are specified as
options instead of Operators.

Dept of CSE 45

Operation Operator (or) Option

AND -a

OR -o

NOT !

3) Relational Operators:

 All the relational operators are represented as Options.

Dept of CSE 46

Operation Operator (or) Option

Greater than -gt

Greater than or equal -ge

Less than -lt

Less than or equal -le

Equal to -eq

Not equal -ne

Operators in UNIX (Contd..)

Branching Control Structures:
 Program structures that are used to shift the point of execution are

called Branching Control structures.

 These statements are called as selection statements or Conditional
Statements or Decision-making Statements.

 There are total 4 conditional statements which can be used in shell
programming:

 if – then – fi statement

 if – then – else - fi statement

 if – then – elif –else -fi statement

 case – esac statement (case statement works just like switch statement in C)

Dept of CSE 47

Branching Control Structures (Contd..)
1) if – then – fi statement :

 This block will be executed if specified condition is
evaluated to true.

 Syntax:
 if <Control-command / test_expression >

 then

 true-block /statement

 fi

Example:

Dept of CSE 48

2) if – then – else - fi statement :

 If specified condition in if is evaluated to true, the statement
inside if block will be executed otherwise the statement in else
block is executed.

Syntax:

 if <condition /test-expression >

 then

 statement1

 else

 statement2

 fi

Dept of CSE 49

Branching Control Structures (Contd..)

Example on if – then – else - fi statement :

Dept of CSE 50

$vi i.sh

OUTPUT

3) if – then – elif –else -fi statement (else -if ladder):

• To use multiple conditions in one if-else block, then elif keyword is
used in shell.

• If expression1 is true then it executes statement 1 and 2, and this
process continues.

• If none of the condition is true then it processes else part.

• Syntax:
 if <condition/test-expression1>

 then

 statement(s)

 elif <condition/test-expression1>

 then

 statement(s)

 else

 statement(s)

 fi

Dept of CSE 51

Branching Control Structures (Contd..)

4) case –esac statement:

• We can use multiple if…else statements to perform a multi-
way branch. However , this is not always the best solution ,
especially when all of the branches depend on the value of
a single variable.

• Shell supports case-esac statement which handles exactly
this situation, and it does so more efficiently than repeated
if…else statements.

• case statement works as a switch statement if specified
value match with the pattern then it will execute a block of
that particular pattern.

• If there is no match, the exit status of the case is zero.
Dept of CSE 52

Branching Control Structures (Contd..)

 Syntax:

 case value in #Beginning of case

 Pattern 1)

 Statement(s) to be executed if pattern1 matched

 ;; # Break

 Pattern 2)

 Statement(s) to be executed if pattern2 matched

 ;;

 *)

 Default condition to be executed

 ;;

 esac #End of case

Dept of CSE 53

Branching Control Structures (Contd..)

Example on case-esac
Example: write a shell script to count the number of

lines, words, characters

 echo “Enter File name”

 read fname

echo “ Enter 1-line count, 2 – word count, 3-character count”

read ch

case $ch in

1) echo `wc –l $fname` ;;

2) echo `wc –w $fname` ;;

3) echo `wc –lc$fname` ;;

*) echo “Hai how are you” ;;

esac

Dept of CSE 54

test command:
 This is a built-in shell command that evaluates the

expression given to it as an argument.

 It return true if the evaluation of an expression returns a
zero (0).

 It returns false if the evaluation of expression returns a
non-zero value.

 The test command can also be replaced with [] (square
brackets).

 Syntax:

 test(expression) / [expression]

 With test command, we can carry 3 types of tests:

1. Numeric Tests

2. String Tests.

3. File Tests.

Dept of CSE 55

1. Numeric Test:

• This is used when two numbers are compared using relational operators.

• They allow us to compare two values to see whether they are equal to
each other, unequal or whether one is greater than the other. The below
are the numerical test operators:

Dept of CSE 56

test command (Contd…)

Operator Meaning

-gt greater than

-lt Less than

-ge greater than or equal to

-le Less than or equal to

-ne Not equal to

-eq equal to

Examples on Numerical test:

1. echo “Enter the first number”

 read a

 echo “Enter the second number”

 read b

 if [$a -gt $b]

 then

 echo “ first number is greater than second number”

 else

 echo “ first number is less than second number”

 fi

 Example 2:

 $x=5

 $y=7

 test $x –eq $y; echo $? #returns 1 as the test fails.

 test [$x –lt $y]; echo $? # returns 0 as the test get success.
 Dept of CSE 57

test command (Contd…)

test command (Contd…)
2) File Test:
 Using these we can find out whether the specified file is an ordinary file (or) a

directory, (or) whether it grants read, write (or) execute permissions , so on.

 Various File test Operators are:

Dept of CSE 58

Option Meaning

-s file True, if the file exists and has a size greater than 0.

-f file True, if the file exists and is not a directory.

-d file True, if the file exists and is a Directory.

-c file True, if the file exists and is a Character Special file.

-b file True, if the file exists and is a Block Special file.

-r file True, if the file exists and have a read permission to it.

-w file True, if the file exists and have a write permission to it.

-x file True, if the file exists and have a Execute permission to it.

-k file True, if the file exists and its sticky bit is set.

Example on File test:

 echo “Enter Filename”

 read fname

 if [-f $fname]

 then

 echo “ you indeed entered a filename”

 else

 echo “ what you entered is not a filename”

 fi

Dept of CSE 59

test command (Contd…)

3) String Test:

• String tests are conducted to check:
• Equality of strings.

• Non-equality of strings.

• zero- or non-zero length of a String.

Dept of CSE 60

test command (Contd…)

Condition Meaning

string1=string2 True, if the strings are same

String1!=string2 True, if the strings are different

-n string True, if the length of the string is greater than 0

-z string True, if the length of the string is 0

 string True, if the string is not a null string

Examples on String test:

1. echo “Enter your Name”

 read name

 if [-z $name]

 then

 echo “ you have not entered your name”

 else

 echo “you have a nice name: $name”

 fi

 2.echo -n “Enter the filename”

 read fname

 if test -f $fname

 then echo “$fname is an ordinary file”

 elif test -d $fname

 then echo “$fname is an directory file”

 elif test -s $fname

 then echo “$fname is not an empty file”

 fi

Dept of CSE 61

test command (Contd…)

Loop Control Structures / Iterative
Control Structures:
 A loop involves repeating some portion of the program

either a specified number of times or until a particular
condition is being satisfied.

 The following are the Looping structures that are
supported by UNIX shell programming:

 using a for loop

 using a while loop

 using until loop

Dept of CSE 62

for loop:
 The for loop operates on lists of items. It repeats a set of commands for every

item in a list.

Syntax 1:

for var-name in <list-of values> # the list of values in the for loop should be separated by one/more blanks

 do

 Statement(s) to be executed for every word.

 done

Syntax 2:

 for((expression1;expression2;expression3))

 do

 statement(s)

 done

Syntax 3:

 for var in seq first incre last

 do

 statement(s)

 done

Dept of CSE 63

for loop Examples
1. for i in rat mat

 do

 echo $i

 done

2. for i in nick f1 f2

 do

 cat $i

 done

3. for in `seq 1 2 10`

 do

 echo $i

 done

Dept of CSE 64

for loop Examples
4. for((i=0;i<=10;i++))

 do

 echo $i

 done

5. echo “Enter n”

 read n

 f=1

 for((i=1;i<=n;i++))

 do

 f=`expr $f * $i`

 done

 echo $f

Dept of CSE 65

while loop:
 The while loop enables you to execute a set of commands repeatedly until

some condition occurs.

 It is a entry controlled iterative structure. Depending on the exit status of
control command the commands are executed.

 If the exit status of command is true it returns 0 and if it is false it returns
1. As long as the condition is true the loop is executed in while.

 Syntax:

 while <control condition>

 do

 Statement(s) to be executed if command is true

 done

Dept of CSE 66

while loop (Contd…)
Example: shell script for sum of digits using while loop
 echo “Enter n”

 read n

 sum=0

 r=0

 while [$n -gt 0]

 do

 r=`expr $n % 10`

 sum= `expr $sum + $r`

 n=`expr $n / 10`

 done

 echo $sum

Dept of CSE 67

until Loop:
 The while loop is perfect for a situation where you need to execute a set

of statements as long as the condition is true.

 Sometimes you need to execute a set of statements as long as the
condition is false.

 In such cases, until loop is used.

 The until loop executes till the exit status of the control command is
false and terminates when this status becomes true.

 Syntax:
 until <control command>

 do

 Statement(s) to be executed until condition is true

 done

Dept of CSE 68

Difference between until and while loop

#print numbers from 1 to 10

#using while loop

#print numbers from 1 to 10

#using until loop

 i=1

while [$i -le 10]

 do

 echo $i

 i=`expr $i + 1`

 done

i=1

until [$i -le 10]

 do

 echo $i

 i=`expr $i + 1`

 done

Dept of CSE 69

Unconditional statements:
The un-conditional statements in UNIX are:

a) break statement

b) continue statement

a) break statement: The break statement is used to terminate from loop
or block.

 Syntax: break

 Example:

 a=0

 while [$a -lt 10]

 do

 echo $a

 if [$a -eq 5]

 then

 break

 fi

 a=`expr $a + 1`

 done

Dept of CSE 70

b)continue statement: The continue statement is similar to the break
statement except it causes the current iteration of the loop to exit
rather than the entire loop.

 Syntax: continue

Example:

 for((x=0;x<=10;x++))

 do

 y=`expr $x % 2`

 if [$y –eq 0]

 then

 echo “echo $x”

 continue

 fi

 echo “odd $x”

 done
Dept of CSE 71

Unconditional statements(contd..):

expr command:
 The expr command is used to carry out basic arithmetic

operations on integers.

 This command is used only when arithmetic operations are
simple and are few.

 This command combines the following two functions:
 Performs arithmetic operations on integers and

 Manipulates strings.

 For complex arithmetic operations, we can use UNIX
calculators like bc.

Dept of CSE 72

Integer arithmetic:
 Five operators used on integers: +, -, *, / and %.

Syntax:

 expr $op1 operator $op2

Example:

 $ x=5 y=3

 $ expr $x + $y # outputs 8

 $ expr $x - $y # outputs 2

 $ expr $x * $y # outputs 15

 $ expr $x / $y # outputs 1

 $ expr $x % $y # outputs 2

 $ z =`expr $x + $y` # command substitution to assign a variable

 $ echo $z # outputs 8

Dept of CSE 73

String Handling:
 Three functions used on strings:

 Finding length of string

 Extracting substring

 Locating position of a character in a string

Syntax:
 expr "exp1“ : "exp2“

 On the left of the colon (:), the string to be worked upon is placed. On

the right of the colon(:), a regular expression is placed.

Dept of CSE 74

String Handling (Contd..):

length of the String: The regular expression ".*" is used to
print the number of characters matching the pattern.

 Syntax:
 expr "string" : ".*"

 Example:
 $ expr “srivasavi” : ‘.*’ # outputs 9

Extracting a Substring: expr command can be used to extract
a string enclosed by the escape characters "\(" and "\)"

Syntax:
Expr "string" : "\(substring \)“

Example:
 $ expr “srivasavi” : " \(vas \)" # outputs ‘vas'

 Dept of CSE 75

Locating Position of a Character :

 expr command can be used to find the location of the
first occurrence of a character inside a string.

 Syntax:

 expr "string" : "[^ch]*ch" #ch → character

 Example:

 $ expr “srivasavi” : "[^a]*a" # outputs 2

Dept of CSE 76

String Handling (Contd..):

Real arithmetic in shell programs:
 If both operands in an arithmetic operation are real, then that

operation is called Real Arithmetic.

 The expr command works only on integers.

 Real arithmetic can be managed using the bc command (basic
calculator) along with the scale function and the echo command.

 The output of the arithmetic expression is piped to the bc command.

 Example:

 $c=‘echo $a + $b | bc’

 Because of piping, echo does not display its output, rather it will direct
its output to the bc command.

Dept of CSE 77

The here Document (<<)- I/O Redirection:

 The << symbol can be used to read data from the same file
containing the script. This file is called as a here document.

 The term 'here' signifies that the data is here rather than in
the file.

 Any command using standard input can also take input from
a here document.

 Syntax:
 command << delimiter

 document

 delimiter

 Dept of CSE 78

here Document (<<)- I/O Redirection(contd..)

For example:
 $ mailx vasavi << SRI

 Explore

 Dream

 Discover

SRI

 The string (SRI) is delimiter.

 The shell treats every line delimited by SRI as input to the command
mailx.

 vasavi at the other end will see 3 lines of message text with the date
inserted by command.

 The word SRI itself doesn’t show up.

Dept of CSE 79

Using Here Document with Interactive Programs: A shell
script can be made to work non-interactively by supplying inputs
through here document.

 Example:

 $ wc -l << END
 Decide

 Commit

 Succeed

END

 #outputs number of lines = 3

Dept of CSE 80

here Document (<<)- I/O Redirection(contd..)

The sleep command:
 sleep is a command-line utility that allows you to suspends the

calling process for a specified time.

 In other words, the sleep command pauses the execution of the
next command for a given number of seconds.

 syntax:

 sleep NUMBER[SUFFIX]...

 The NUMBER may be a positive integer or a floating-point
number.

 The SUFFIX may be one of the following:

 s - seconds (default)

 m - minutes

 h - hours

 d - days

 Dept of CSE 81

 When no suffix is specified, it defaults to seconds.

 When two or more arguments are given, the total amount of
time is equivalent to the sum of their values.

 Example 1: Sleep for 5 seconds

 sleep 5

 Example 2: Sleep for 1 hour

 sleep 1h

 Example 3: Sleep for 1 day

 sleep 1d

Dept of CSE 82

The sleep command (contd..)

Debugging Scripts:
 When a script does not work properly, we need to determine the

location of the problem.

 The UNIX shells provide a debugging mode.

 Run the entire script in debug mode or just a portion of the script.

 To run an entire script in debug mode, add -x after the #!/bin/[shell] on
the first line:

 For Example :

 #!/bin/sh –x

 To run an entire script in debug mode from the command line, add a -x
to the sh command used to execute the script:

 $ sh -x script_name

Dept of CSE 83

Debugging Scripts: options
Option Meaning

set -x Prints the statements after interpreting metacharacters and
variables

set +x Stops the printing of statements

set -v Prints the statements before interpreting metacharacters and
variables

set -f Disables file name generation (using metacharacters)

 The set -v statement is similar to set -x, except, it shows the
statement line before the shell performs any interpretation or
substitution.

Dept of CSE 84

The script command:
 script command in UNIX is used to make typescript or record all

the terminal activities.

 After executing the script command it starts recording
everything printed on the screen including the inputs and
outputs until exit.

 By default, all the terminal information is saved in the file
typescript , if no argument is given.

 script is mostly used when we want to capture the output of a
command or a set of command while installing a program.

 script command uses two files i.e. one for the terminal output
and other for the timing information.

 Syntax:

script [options] [file]

Dept of CSE 85

The Eval command:
 eval is a built-in Linux command which is used to execute

arguments as a shell command.

 It combines arguments into a single string and uses it as an
input to the shell and execute the commands.

 Syntax

 eval [arg ...]

 In the below figure, you can see that cd Desktop command is
stored in a variable “CD” as a shell command. Now you can use
this “CD” as an argument with eval command.

Dept of CSE 86

The Exec command:
 The exec command has the following two abilities:

 Running a command without creating a new process.

 Redirecting standard input, output or error of a shell
script from within the script.

 The exec command replaces the current shell process
with the specified command.

 Normally, when we run a command, a new process is
spawned (forked).

 The exec command does not spawn a new process.

 Instead, the current process is overlaid with the new
command.

 Dept of CSE 87

The Exec command:
 In other words, the exec command is executed in place

of the current shell with out creating a new process.

 This command implements UNIX exec system call.

 Syntax:

exec [-cl] [-a name] [command [arguments]] [redirection ...]

 Options:

 c: It is used to execute the command with empty
environment.

 a name: Used to pass a name as the zeroth argument of the
command.

 l: Used to pass dash as the zeroth argument of the command.

Dept of CSE 88

Command Line Structure:
 A command is a program that tells the UNIX system to

do something.

 Syntax:
 command [options] [arguments]

 Where an argument indicates on what the command is
to perform its action, usually a file or a series of files.

 An option modifies the command, changing the way it
performs.

 Commands are case-sensitive.

Dept of CSE 89

The command Line Structure:
 The components of an entered command may be categorized

into one of four types: command, option, option argument
and command argument.

 command: The program or command to run. It is the first word
in the overall command.

 option: An option to change the behavior of the command. The
available options are described in the command’s manual page.

 option argument: Some options have their own arguments. For
instance, sort has a -t option to specify a delimiter (-t :), and tar
requires the -f option to be used with a filename (-f /dev/fd0).

 command argument: An argument to give the program some
additional information, such as the name of a file or a string to
search for.

 Dept of CSE 90

Command Line Structure:
 Example:

 Command and command are not the same.

 Options are generally preceded by a hyphen(-).

 For most commands, more than one option can be
strung together.

 Syntax:
command –[option][option][option]

 Example:
 ls –alR

 Will perform a long list on all files in the current directory and
recursively perform the list through all sub-directories.

Dept of CSE 91

The command Line Structure:
 For most commands, we can separate the options,

preceding each with a hyphen.

 Syntax:
 command –[option1]–[option2]–[option3]

 Example:
 ls –a-l-R

 options and syntax for a command are listed in the
man page for the command.

Dept of CSE 92

UNIX Metacharacters:
 Metacharacters are a group of characters that have

special meanings to the UNIX operating system.

 Metacharacters can make many tasks easier by
allowing you to redirect information from one
command to another or to a file, string multiple
commands together on one line, or have other effects
on the commands they are issued in.

Dept of CSE 93

UNIX Metacharacters:
Symbol Meaning

> Output redirection

>> Output redirection (append)

< Input redirection

* File substitution wildcard; zero or more characters

? File substitution wildcard; one character

[] File substitution wildcard; any character between brackets

`cmd` Command Substitution

$(cmd) Command Substitution

| The Pipe (|)

; Command sequence

|| OR conditional execution

&& AND conditional execution

() Group commands

& Run command in the background

Comment

$ Expand the value of a variable

\ Prevent or escape interpretation of the next character

<< Input redirection

Dept of CSE 94

