ACADEMIC REGULATIONS
COURSE STRUCTURE
AND
DETAILED SYLLABUS

For
COMPUTER SCIENCE ENGINEERING
BRANCH

COMPUTER SCIENCE & ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGY UNIVERSITY KAKINADA
KAKINADA - 533 003, Andhra Pradesh, India
ACADEMIC REGULATIONS R13 FOR M. Tech (REGULAR) DEGREE COURSE

Applicable for the students of M. Tech (Regular) Course from the Academic Year 2013-14 onwards

The M. Tech Degree of Jawaharlal Nehru Technological University Kakinada shall be conferred on candidates who are admitted to the program and who fulfil all the requirements for the award of the Degree.

1.0 ELIGIBILITY FOR ADMISSIONS

Admission to the above program shall be made subject to eligibility, qualification and specialization as prescribed by the University from time to time.

Admissions shall be made on the basis of merit/rank obtained by the candidates at the qualifying Entrance Test conducted by the University or on the basis of any other order of merit as approved by the University, subject to reservations as laid down by the Govt. from time to time.

2.0 AWARD OF M. Tech DEGREE

2.1 A student shall be declared eligible for the award of the M. Tech Degree, if he pursues a course of study in not less than two and not more than four academic years.

2.2 The student shall register for all 80 credits and secure all the 80 credits.

2.3 The minimum instruction days in each semester are 90.

3.0 A. COURSES OF STUDY

The following specializations are offered at present for the M. Tech course of study.

1. M.Tech- Structural Engineering
2. M.Tech- Transportation Engineering
3. M.Tech- Infrastructure Engineering & Management
4. ME- Soil Mechanics and Foundation Engineering
5. M.Tech- Environmental Engineering
6. M.Tech-Geo-Informatics
7. M.Tech-Spatial Information Technology
8. M.Tech- Civil Engineering
11. M.Tech- Power Electronics
12. M.Tech- Power & Industrial Drives
13. M.Tech- Power Electronics & Electrical Drives
15. M.Tech- Power Electronics & Drives
16. M.Tech- Power Systems
17. M.Tech- Power Systems Engineering
18. M.Tech- High Voltage Engineering
20. M.Tech- Power System and Control
22. M.Tech- Electrical Machines and Drives
23. M.Tech- Advanced Power Systems
25. M.Tech- Control Engineering
26. M.Tech- Control Systems
27. M.Tech- Electrical Power Engineering
28. M.Tech- Power Engineering & Energy System
29. M.Tech- Thermal Engineering
30. M.Tech- CAD/CAM
32. M.Tech- Computer Aided Design and Manufacture
33. M.Tech- Advanced Manufacturing Systems
34. M.Tech- Computer Aided Analysis & Design
35. M.Tech- Mechanical Engineering Design
36. M.Tech- Systems and Signal Processing
38. M.Tech- Electronics & Communications Engineering
39. M.Tech- Communication Systems
40. M.Tech- Communication Engineering & Signal Processing
41. M.Tech- Microwave and Communication Engineering
42. M.Tech- Telematics
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>M.Tech- Digital Systems &amp; Computer Electronics</td>
</tr>
<tr>
<td>44</td>
<td>M.Tech- Embedded System</td>
</tr>
<tr>
<td>45</td>
<td>M.Tech- VLSI</td>
</tr>
<tr>
<td>46</td>
<td>M.Tech- VLSI Design</td>
</tr>
<tr>
<td>47</td>
<td>M.Tech- VLSI System Design</td>
</tr>
<tr>
<td>48</td>
<td>M.Tech- Embedded System &amp; VLSI Design</td>
</tr>
<tr>
<td>49</td>
<td>M.Tech- VLSI &amp; Embedded System</td>
</tr>
<tr>
<td>50</td>
<td>M.Tech- VLSI Design &amp; Embedded Systems</td>
</tr>
<tr>
<td>51</td>
<td>M.Tech- Image Processing</td>
</tr>
<tr>
<td>52</td>
<td>M.Tech- Digital Image Processing</td>
</tr>
<tr>
<td>53</td>
<td>M.Tech- Computers &amp; Communication</td>
</tr>
<tr>
<td>54</td>
<td>M.Tech- Computers &amp; Communication Engineering</td>
</tr>
<tr>
<td>55</td>
<td>M.Tech- Instrumentation &amp; Control Systems</td>
</tr>
<tr>
<td>56</td>
<td>M.Tech – VLSI &amp; Micro Electronics</td>
</tr>
<tr>
<td>57</td>
<td>M.Tech – Digital Electronics &amp; Communication Engineering</td>
</tr>
<tr>
<td>58</td>
<td>M.Tech- Embedded System &amp; VLSI</td>
</tr>
<tr>
<td>59</td>
<td>M.Tech- Computer Science &amp; Engineering</td>
</tr>
<tr>
<td>60</td>
<td>M.Tech- Computer Science</td>
</tr>
<tr>
<td>61</td>
<td>M.Tech- Computer Science &amp; Technology</td>
</tr>
<tr>
<td>62</td>
<td>M.Tech- Computer Networks</td>
</tr>
<tr>
<td>63</td>
<td>M.Tech- Computer Networks &amp; Information Security</td>
</tr>
<tr>
<td>64</td>
<td>M.Tech- Information Technology</td>
</tr>
<tr>
<td>65</td>
<td>M.Tech- Software Engineering</td>
</tr>
<tr>
<td>66</td>
<td>M.Tech- Neural Networks</td>
</tr>
<tr>
<td>67</td>
<td>M.Tech- Chemical Engineering</td>
</tr>
<tr>
<td>68</td>
<td>M.Tech- Biotechnology</td>
</tr>
<tr>
<td>69</td>
<td>M.Tech- Nano Technology</td>
</tr>
<tr>
<td>70</td>
<td>M.Tech- Food Processing</td>
</tr>
<tr>
<td>71</td>
<td>M.Tech- Avionics</td>
</tr>
</tbody>
</table>

and any other course as approved by AICTE/ University from time to time.
3.0 B. Departments offering M. Tech Programmes with specializations are noted below:

<table>
<thead>
<tr>
<th>Civil Engg.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>M.Tech- Structural Engineering</td>
</tr>
<tr>
<td>2.</td>
<td>M.Tech- Transportation Engineering</td>
</tr>
<tr>
<td>3.</td>
<td>M.Tech- Infrastructure Engineering &amp; Management</td>
</tr>
<tr>
<td>4.</td>
<td>ME- Soil Mechanics and Foundation Engineering</td>
</tr>
<tr>
<td>5.</td>
<td>M.Tech- Environmental Engineering</td>
</tr>
<tr>
<td>6.</td>
<td>M.Tech-Geo-Informatics</td>
</tr>
<tr>
<td>7.</td>
<td>M.Tech-Spatial Information Technology</td>
</tr>
<tr>
<td>8.</td>
<td>M.Tech- Civil Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EEE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>M.Tech- Power Electronics</td>
</tr>
<tr>
<td>2.</td>
<td>M.Tech- Power &amp; Industrial Drives</td>
</tr>
<tr>
<td>3.</td>
<td>M.Tech- Power Electronics &amp; Electrical Drives</td>
</tr>
<tr>
<td>4.</td>
<td>M.Tech- Power System Control &amp; Automation</td>
</tr>
<tr>
<td>5.</td>
<td>M.Tech- Power Electronics &amp; Drives</td>
</tr>
<tr>
<td>6.</td>
<td>M.Tech- Power Systems</td>
</tr>
<tr>
<td>7.</td>
<td>M.Tech- Power Systems Engineering</td>
</tr>
<tr>
<td>8.</td>
<td>M.Tech- High Voltage Engineering</td>
</tr>
<tr>
<td>10.</td>
<td>M.Tech- Power System and Control</td>
</tr>
<tr>
<td>11.</td>
<td>M.Tech- Power Electronics &amp; Systems</td>
</tr>
<tr>
<td>12.</td>
<td>M.Tech- Electrical Machines and Drives</td>
</tr>
<tr>
<td>15.</td>
<td>M.Tech- Control Engineering</td>
</tr>
<tr>
<td>16.</td>
<td>M.Tech- Control Systems</td>
</tr>
<tr>
<td>17.</td>
<td>M.Tech- Electrical Power Engineering</td>
</tr>
<tr>
<td>18.</td>
<td>M.Tech- Power Engineering &amp; Energy System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>M.Tech- Thermal Engineering</td>
</tr>
<tr>
<td>2.</td>
<td>M.Tech- CAD/CAM</td>
</tr>
<tr>
<td>4.</td>
<td>M.Tech- Computer Aided Design and Manufacture</td>
</tr>
<tr>
<td>5.</td>
<td>M.Tech- Advanced Manufacturing Systems</td>
</tr>
<tr>
<td>6.</td>
<td>M.Tech-Computer Aided Analysis &amp; Design</td>
</tr>
<tr>
<td>7.</td>
<td>M.Tech- Mechanical Engineering Design</td>
</tr>
<tr>
<td>ECE</td>
<td>M.Tech- Systems and Signal Processing</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Digital Electronics and Communication Systems</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Electronics &amp; Communications Engineering</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Communication Systems</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Communication Engineering &amp; Signal Processing</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Microwave and Communication Engineering</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Telematics</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Digital Systems &amp; Computer Electronics</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Embedded System</td>
</tr>
<tr>
<td></td>
<td>M.Tech- VLSI</td>
</tr>
<tr>
<td></td>
<td>M.Tech- VLSI Design</td>
</tr>
<tr>
<td></td>
<td>M.Tech- VLSI System Design</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Embedded System &amp; VLSI Design</td>
</tr>
<tr>
<td></td>
<td>M.Tech- VLSI &amp; Embedded System</td>
</tr>
<tr>
<td></td>
<td>M.Tech- VLSI Design &amp; Embedded Systems</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Image Processing</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Digital Image Processing</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Computers &amp; Communication</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Computers &amp; Communication Engineering</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Instrumentation &amp; Control Systems</td>
</tr>
<tr>
<td></td>
<td>M.Tech – VLSI &amp; Micro Electronics</td>
</tr>
<tr>
<td></td>
<td>M.Tech – Digital Electronics &amp; Communication Engineering</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Embedded System &amp; VLSI</td>
</tr>
<tr>
<td>CSE</td>
<td>M.Tech- Computer Science &amp; Engineering</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Computer Science</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Computer Science &amp; Technology</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Computer Networks</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Computer Networks &amp; Information Security</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Information Technology</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Software Engineering</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Neural Networks</td>
</tr>
<tr>
<td>Others</td>
<td>M.Tech- Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Biotechnology</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Nano Technology</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Food Processing</td>
</tr>
<tr>
<td></td>
<td>M.Tech- Avionics</td>
</tr>
</tbody>
</table>
4.0 ATTENDANCE

4.1 A student shall be eligible to write University examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects.

4.2 Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester shall be granted by the College Academic Committee.

4.3 Shortage of Attendance below 65% in aggregate shall not be condoned.

4.4 Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.

4.5 A prescribed fee shall be payable towards condonation of shortage of attendance.

4.6 A student shall not be promoted to the next semester unless he satisfies the attendance requirement of the present semester, as applicable. They may seek readmission into that semester when offered next. If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.

5.0 EVALUATION

The performance of the candidate in each semester shall be evaluated subject-wise, with a maximum of 100 marks for theory and 100 marks for practicals, on the basis of Internal Evaluation and End Semester Examination.

5.1 For the theory subjects 60 marks shall be awarded based on the performance in the End Semester Examination and 40 marks shall be awarded based on the Internal Evaluation. The internal evaluation shall be made based on the average of the marks secured in the two Mid Term-Examinations conducted-one in the middle of the Semester and the other immediately after the completion of instruction. Each mid term examination shall be conducted for a total duration of 120 minutes with 4 questions (without choice) each question for 10 marks. End semester examination is conducted for 60 marks for 5 questions to be answered out of 8 questions.
5.2 For practical subjects, 60 marks shall be awarded based on the performance in the End Semester Examinations and 40 marks shall be awarded based on the day-to-day performance as Internal Marks.

5.3 There shall be two seminar presentations during III semester and IV semester. For seminar, a student under the supervision of a faculty member, shall collect the literature on a topic and critically review the literature and submit it to the department in a report form and shall make an oral presentation before the Project Review Committee consisting of Head of the Department, Supervisor and two other senior faculty members of the department. For each Seminar there will be only internal evaluation of 50 marks. A candidate has to secure a minimum of 50% of marks to be declared successful.

5.4 A candidate shall be deemed to have secured the minimum academic requirement in a subject if he secures a minimum of 40% of marks in the End semester Examination and a minimum aggregate of 50% of the total marks in the End Semester Examination and Internal Evaluation taken together.

5.5 In case the candidate does not secure the minimum academic requirement in any subject (as specified in 5.4) he has to reappear for the End semester Examination in that subject. A candidate shall be given one chance to re-register for each subject provided the internal marks secured by a candidate are less than 50% and has failed in the end examination. In such a case, the candidate must re-register for the subject(s) and secure the required minimum attendance. The candidate’s attendance in the re-registered subject(s) shall be calculated separately to decide upon his eligibility for writing the end examination in those subject(s). In the event of the student taking another chance, his internal marks and end examination marks obtained in the previous attempt stand cancelled. For re-registration the candidates have to apply to the University through the college by paying the requisite fees and get approval from the University before the start of the semester in which re-registration is required.
5.6 In case the candidate secures less than the required attendance in any re registered subject(s), he shall not be permitted to write the End Examination in that subject. He shall again re-register the subject when next offered.

5.7 Laboratory examination for M. Tech. courses must be conducted with two Examiners, one of them being the Laboratory Class Teacher or teacher of the respective college and the second examiner shall be appointed by the university from the panel of examiners submitted by the respective college.

6.0 EVALUATION OF PROJECT/DISSERTATION WORK

Every candidate shall be required to submit a thesis or dissertation on a topic approved by the Project Review Committee.

6.1 A Project Review Committee (PRC) shall be constituted with Head of the Department and two other senior faculty members.

6.2 Registration of Project Work: A candidate is permitted to register for the project work after satisfying the attendance requirement of all the subjects, both theory and practical.

6.3 After satisfying 6.2, a candidate has to submit, in consultation with his project supervisor, the title, objective and plan of action of his project work for approval. The student can initiate the Project work, only after obtaining the approval from the Project Review Committee (PRC).

6.4 If a candidate wishes to change his supervisor or topic of the project, he can do so with the approval of the Project Review Committee (PRC). However, the Project Review Committee (PRC) shall examine whether or not the change of topic/supervisor leads to a major change of his initial plans of project proposal. If yes, his date of registration for the project work starts from the date of change of Supervisor or topic as the case may be.

6.5 A candidate shall submit his status report in two stages at least with a gap of 3 months between them.

6.6 The work on the project shall be initiated at the beginning of the II year and the duration of the project is two semesters. A candidate is permitted to submit Project Thesis only after
successful completion of theory and practical course with the approval of PRC not earlier than 40 weeks from the date of registration of the project work. The candidate has to pass all the theory and practical subjects before submission of the Thesis.

6.7 Three copies of the Project Thesis certified by the supervisor shall be submitted to the College/School/Institute.

6.8 The thesis shall be adjudicated by one examiner selected by the University. For this, the Principal of the College shall submit a panel of 5 examiners, eminent in that field, with the help of the guide concerned and head of the department.

6.9 If the report of the examiner is not favourable, the candidate shall revise and resubmit the Thesis, in the time frame as decided by the PRC. If the report of the examiner is unfavorable again, the thesis shall be summarily rejected. The candidate has to re-register for the project and complete the project within the stipulated time after taking the approval from the University.

6.10 If the report of the examiner is favourable, Viva-Voce examination shall be conducted by a board consisting of the Supervisor, Head of the Department and the examiner who adjudicated the Thesis. The Board shall jointly report the candidate’s work as one of the following:

A. Excellent
B. Good
C. Satisfactory
D. Unsatisfactory

The Head of the Department shall coordinate and make arrangements for the conduct of Viva-Voce examination.

6.11 If the report of the Viva-Voce is unsatisfactory, the candidate shall retake the Viva-Voce examination only after three months. If he fails to get a satisfactory report at the second Viva-Voce examination, the candidate has to re-register for the project and complete the project within the stipulated time after taking the approval from the University.
7.0 AWARD OF DEGREE AND CLASS

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of M. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>% of marks to be secured</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above (Without any Supplementary Appearance)</td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
</tr>
<tr>
<td></td>
<td>70% and above (With any Supplementary Appearance)</td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
</tr>
</tbody>
</table>

The marks in internal evaluation and end examination shall be shown separately in the memorandum of marks.

8.0 WITHHOLDING OF RESULTS

If the student has not paid the dues, if any, to the university or if any case of indiscipline is pending against him, the result of the student will be withheld. His degree will be withheld in such cases.

4.0 TRANSITORY REGULATIONS (for R09)

9.1 Discontinued or detained candidates are eligible for re-admission into same or equivalent subjects at a time as and when offered.

9.2 The candidate who fails in any subject will be given two chances to pass the same subject; otherwise, he has to identify an equivalent subject as per R13 academic regulations.

10. GENERAL

10.1 Wherever the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”, “hers”.

10.2 The academic regulation should be read as a whole for the purpose of any interpretation.

10.3 In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.

10.4 The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.
### MALPRACTICES RULES
**DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS**

<table>
<thead>
<tr>
<th>Nature of Malpractices/ Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
</tbody>
</table>

1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)

   Expulsion from the examination hall and cancellation of the performance in that subject only.

1. (b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.

   Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.

2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination

   Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project
<table>
<thead>
<tr>
<th></th>
<th>(theory or practical) in which the candidate is appearing.</th>
<th>work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>4.</td>
<td>Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after</td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>the examination.</td>
<td>shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
<td>Cancellation of the performance in that subject.</td>
</tr>
<tr>
<td></td>
<td>5. Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
<td>In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.</td>
</tr>
<tr>
<td></td>
<td>6. Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>8.</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td><strong>9.</strong></td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
<td>Student of the college's expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.</td>
</tr>
<tr>
<td><strong>10.</strong></td>
<td>Comes in a drunken condition to the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.</td>
</tr>
<tr>
<td><strong>11.</strong></td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
<td>Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.</td>
</tr>
<tr>
<td><strong>12.</strong></td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.</td>
<td></td>
</tr>
</tbody>
</table>
Malpractices identified by squad or special invigilators

1. Punishments to the candidates as per the above guidelines.

2. Punishment for institutions: (if the squad reports that the college is also involved in encouraging malpractices)
   (i) A show cause notice shall be issued to the college.
   (ii) Impose a suitable fine on the college.
   (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.
Prohibition of ragging in educational institutions Act 26 of 1997

Salient Features

- Ragging within or outside any educational institution is prohibited.
- Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student

<table>
<thead>
<tr>
<th>Ragging Activity</th>
<th>Imprisonment Upto</th>
<th>Fine Upto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teasing, Embarrassing and Humiliation</td>
<td>6 Months</td>
<td>Rs. 1,000/-</td>
</tr>
<tr>
<td>Assaulting or Using Criminal force or Criminal intimidation</td>
<td>1 Year</td>
<td>Rs. 2,000/-</td>
</tr>
<tr>
<td>Wrongfully restraining or confining or causing hurt</td>
<td>2 Years</td>
<td>Rs. 5,000/-</td>
</tr>
<tr>
<td>Causing grievous hurt, kidnapping or Abducts or rape or committing unnatural offence</td>
<td>5 Years</td>
<td>Rs. 10,000/-</td>
</tr>
<tr>
<td>Causing death or abetting suicide</td>
<td>10 Months</td>
<td>Rs. 50,000/-</td>
</tr>
</tbody>
</table>

In Case of Emergency CALL TOLL FREE NO.: 1800 - 425 - 1288

LET US MAKE JNTUK A RAGGING FREE UNIVERSITY
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
KAKINADA-533003, Andhra Pradesh (India)
For Constituent Colleges and Affiliated Colleges of JNTUK

Ragging

ABSOLUTELY NO TO RAGGING

1. Ragging is prohibited as per Act 26 of A.P. Legislative Assembly, 1997.
2. Ragging entails heavy fines and/or imprisonment.
3. Ragging invokes suspension and dismissal from the College.
4. Outsiders are prohibited from entering the College and Hostel without permission.
5. Girl students must be in their hostel rooms by 7.00 p.m.
6. All the students must carry their Identity Card and show them when demanded
7. The Principal and the Wardens may visit the Hostels and inspect the rooms any time.

Jawaharlal Nehru Technological University Kakinada
For Constituent Colleges and Affiliated Colleges of JNTUK

In Case of Emergency CALL TOLL FREE NO. : 1800 - 425 - 1288
LET US MAKE JNTUK A RAGGING FREE UNIVERSITY
# Department of Computer Science Engineering

## Specialization: Computer Science & Engineering

### Course Structure

#### I Semester

<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Data Structures and Algorithm Analysis</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Mathematical Foundations of Computer Science</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Computer Organization and Architecture</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Database Management Systems</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Operating Systems</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Software Engineering</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>CSE Lab I</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

#### II Semester

<table>
<thead>
<tr>
<th></th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Information Security</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Computer Networks</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Data Warehousing and Data Mining</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Elective 1</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mobile Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compiler Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Computer Interaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Elective 2</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Image Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soft Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Object Oriented Analysis and Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elective 3</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced Unix Programming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bio Informatics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CSE Lab 2</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
### III SEMESTER

<table>
<thead>
<tr>
<th>S.NO</th>
<th>SUBJECT</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COMPREHENSIVE VIVA</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SEMINAR-I</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>PROJECT WORK PART - I</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td><strong>TOTAL</strong></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

### IV SEMESTER

<table>
<thead>
<tr>
<th>S.NO</th>
<th>SUBJECT</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEMINAR-II</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>PROJECT WORK PART - II</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td><strong>TOTAL</strong></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
## SYLLABUS

<table>
<thead>
<tr>
<th>I - I</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

### ADVANCED DATA STRUCTURES AND ALGORITHM ANALYSIS

#### UNIT-I


#### UNIT-II

Searching-Linear and Binary Search Methods.

Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort.

Trees- Binary trees, Properties, Representation and Traversals (DFT,BFT),Expression Trees(Infix,prefix,postfix).

Graphs-Basic Concepts, Storage Structures and Traversals.

#### UNIT-III

Dictionaries, ADT, The List ADT, Stack ADT, Queue ADT, Hash Table Representation, Hash Functions, Collision Resolution-Separate Chaining, Open Addressing-Linear Probing, Double Hashing.

#### UNIT-IV

Priority queues- Definition, ADT, Realising a Priority Queue Using Heaps, Definition, Insertion, Deletion.


#### UNIT-V

Search Trees- AVL Trees, Definition, Height of AVL Tree, Operations, Insertion, Deletion and Searching.

Search Trees- Introduction to Red-Black and Splay Trees, B-Trees, Height of B-Tree, Insertion, Deletion and Searching, Comparison of Search Trees.
TEXT BOOKS:

2. Data Structures, Algorithms and Applications in java, 2/e, Sartaj Sahni, University Press.

REFERENCES BOOKS:

1. Data Structures And Algorithm Analysis, 2/e, Mark Allen Weiss, Pearson.
2. Data Structures And Algorithms, 3/e, Adam Drozdek, Cengage.
4. Data Structures, Algorithm and OOP, Heilman, TMH.
9. Data Structures, Seymour Lipschutz, Schaum’s Outlines, TMH.
UNIT-I
Predicate calculus: Predicates, statement functions, variables and quantifiers, predicate formulas, free & bound variables, universe of discourse, inference theory of predicate calculus

UNIT-II
Algebraic structures: Algebraic systems, Examples and general properties, Semi groups and monoids, groups, sub groups, Definitions, Examples, homomorphism, Isomorphism and related problems.

UNIT-III
UNIT-IV


UNIT-V

Graph Theory: Representation of Graph, Spanning Trees, BFS, DFS, Kruskals Algorithm, Binary trees, PlanarGraphs, Graph Theory and Applications, Basic Concepts, Isomorphism and Sub graphs, Multi graphs and Euler circuits, Hamiltonian graphs, Chromatic Numbers

TEXTBOOKS:

1. Discrete Mathematical Structures with Applications to computer science J.P Tremblery, R.Manohar, TMH

REFERENCE TEXTBOOKS:

1. Elements of Discrete Mathematics, C L Liu, D P Mohanpatra,TMH
2. Discrete Mathematics, Schaum’s Outlines,Lipschutz,Lipson TMH.
6. Discrete Mathematics for computer science, Bogart, Stein and Drysdale, Springer, 2005
11. Discrete Mathematics with Combinatorics and Graph Theory, Santha, Cengage Learning, 2009
I - I

<table>
<thead>
<tr>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

**COMPUTER ORGANIZATION AND ARCHITECTURE**

**UNIT-I**

**Number Systems And Computer Arithematic**

Signed And Unsigned Numbers, Addition and Subtraction, Multiplication, Division, Floating Point Representation Logical Operation, Gray Code, BCD Code, Error Detecting Codes.

Boolean Algebra, Simplification of Boolean Expressions- Maps.

**UNIT-II**

**Combinational and Sequential Circuits**

Decoders, Encoders, MultiPlexers, Half and Full Adders, Shift Registers, Flip-Flops, Binary Counters, Memory Unit.

**UNIT-III**

**Memory Organisation**

Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory Concept.

**UNIT-IV**

**ALU Design**

Addition and Subtraction, Sign and Unsigned Numbers, Multiplication and Division Algorithms, BCD Adders.

**UNIT- V**

**Input –Output Organisation**

Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupts, DMA, Input Output Processor, Serial Communication.

**TEXT BOOKS:**

2. Micro Processor and Interfacing, 2/e, Douglas V.Hall, TMH.
REFERENCE BOOKS:

1. Digital Logic and Computer Organisation, Rajaraman, Radha Krishnan, PHI.
2. Micro Computer Systems : 8086/8088 family, 2/e, Liu, Gibson, PHI.
4. Computer Organisation, 5/e, Hamacher,vranesic, TMH.
6. Computer Organisation and Design, PalChowdary, PHI.
7. Computer Systems Organisation, jotwani,TMH.
UNIT-I


UNIT-II


UNIT-III

Introduction to Schema Refinement – Problems Caused by redundancy, Decompositions – Problem related to decomposition, Functional

UNIT-IV

Overview of Transaction Management: The ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions – Lock Based Concurrency Control, Deadlocks – Performance of Locking – Transaction Support in SQL.

Concurrency Control: Serializability, and recoverability – Introduction to Lock Management – Lock Conversions, Dealing with Dead Locks, Specialized Locking Techniques – Concurrency Control without Locking.

Crash recovery: Introduction to Crash recovery, Introduction to ARIES, the Log, Other Recovery related Structures, the Write-Ahead Log Protocol, Check pointing, recovering from a System Crash, Media recovery

UNIT-V

Overview of Storage and Indexing: Data on External Storage, File Organization and Indexing – Clustered Indexes, Primary and Secondary Indexes, Index data Structures – Hash Based Indexing, Tree based Indexing, Comparison of File Organizations.

Storing data: Disks and Files: - The Memory Hierarchy – Redundant Arrays of Independent Disks.


Hash Based Indexing: Static Hashing, Extendable hashing, Linear Hashing, Extendable vs. Linear Hashing.
TEXTBOOKS:


REFERENCE BOOKS:

1. Database Management System Oracle SQL and PL/SQL, P.K. Das Gupta, PHI.
8. Introduction to Database Systems, C.J. Date, Pearson Education.
UNIT-I

Overview of Operating System


UNIT-II

Process Management


UNIT-III

Synchronization

Importance of Synchronization, The Critical-Section Problem, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization Examples

Principles Of Deadlock – Deadlock System Model, Deadlock Characterization, Methods For Handling Deadlocks, Deadlock Prevention, Deadlock Detection And Avoidance, Recovery Form Deadlock.

UNIT-IV

Memory Management Strategies & Virtual Memory Management


Secondary-Storage Structures & I/O Systems

Overview of Mass-Storage Structure, Disk Structure, Disk Scheduling,
Disk Management, RAID Structure, I/O Hardware, Application Interface, Kernel I/O Subsystem.

UNIT-V

File System Interface And Implementation


TEXTBOOKS:


REFERENCE BOOKS:

1. Operating Systems, 2/e, Dhamdhre.
UNIT – I

Introduction to Software Engineering:

The evolving role of software, Changing Nature of Software, Software myths. (Text Book 3)

The software problem: Cost, schedule and quality, Scale and change.

UNIT – II

Software Process:

Process and project, component software process, Software development process models : Waterfall model, prototyping, iterative development, relational unified process, time boxing model, Extreme programming and agile process, using process models in a project. Project management process.

UNIT – III

Software requirement analysis and specification: Value of good SRS, requirement process, requirement specification, functional specifications with use-cases, other approaches for analysis, validation.

Planning a software project: Effort estimation, project schedule and staffing, quality planning, risk management planning, project monitoring plan, detailed scheduling.

UNIT – IV

Software Architecture: Role of software architecture, architecture views, components and connector view, architecture styles for C & C view, documenting architecture design, evaluating architectures.

Design: Design concepts, function-oriented design, object oriented design, detailed design, verification, metrics.
UNIT-V

**Coding and Unit testing:** Programming principles and guidelines, incrementally developing code, managing evolving code, unit testing, code inspection, metrics.

**Testing:** Testing concepts, testing process, black-box testing, white-box testing, metrics.

**TEXT BOOKS:**
2. Software Engineering, A Precise approach, Pankaj Jalote, Wiley
3. Software Engineering, 3/e, & 7e Roger S. Pressman, TMH

**REFERENCE BOOKS:**
1. Software Engineering, 8/e, Sommerville, Pearson.
2. Software Engineering principles and practice, W S Jawadekar, TMH
3. Software Engineering concepts, R Fairley, TMH
### CSE LAB 1

Covering Experiments from ADS, DBMS and OS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
UNIT-I

**Introduction:** Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security, Internet Standards and RFCs, Buffer overflow & format string vulnerabilities, TCP session hijacking, ARP attacks, route table modification, UDP hijacking, and man-in-the-middle attacks.

UNIT-II

**Conventional Encryption:**

Conventional Encryption Principles, Conventional encryption algorithms, cipher block modes of operation, location of encryption devices, key distribution Approaches of Message Authentication, Secure Hash Functions and HMAC,

UNIT-III

**Public key:** Public key cryptography principles, public key cryptography algorithms, digital signatures, digital Certificates, Certificate Authority and key management Kerberos, X.509 Directory Authentication Service

UNIT-IV


**Web Security:** Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Electronic Transaction (SET)

**Email Privacy:** Pretty Good Privacy (PGP) and S/MIME.
UNIT-V

SNMP: Basic concepts of SNMP, SNMPv1 Community facility and SNMPv3, Intruders, Viruses and related threats

Fire walls: Firewall Design principles, Trusted Systems, Intrusion Detection Systems

TEXT BOOKS:

2. Hack Proofing your Network, Russell, Kaminsky, Forest Puppy, Wiley Dreamtech

REFERENCE BOOKS:

2. Fundamentals of Network Security, Eric Maiwald, Dream Tech
5. Cryptography and Network Security, 3/e, Stallings, PHI/PEA
7. Introduction to Cryptography, Buchmann, Springer
UNIT-I

Network Hardware reference model: Transmission media, Narrowband ISDN, Broad band ISDN, ATM.

The data Link layer: Design Issues, Error detection and correction, Elementary Data Link Protocols, Sliding window protocols: Data link layer in HDLC, Internet and ATM.

UNIT-II

Channel allocation methods: TDM, FDM, ALOHA, Carrier sense Multiple access protocols, Collision Free protocols – IEEE standard BO2 for LANS – Ethernet, Token Bus, Token ring, Bridges.


UNIT-III

Internet Working: Tunneling, internetworking, Fragmentation, network layer in the internet – IP protocols, IP address, Subnets, Internet control protocols, DSPF, BOP, Internet multicasting, Mobile IP. Network layer in the ATM Networks – cell formats, connection setup, routing and switching, service categories, and quality of service, ATM LANs.

UNIT-IV

The Transport Layer: Elements of transport protocols – addressing, establishing a connection, releasing connection, flow control and buffering and crash recovery, end to end protocols: UDP, reliable Byte Stream (TCP) end to end format, segment format, connection establishment and termination, sliding window revisited, adaptive retransmission, TCP extension, Remote Procedure Call – BLAST, CHAN, SELECT, DCE.
UNIT-V


**TEXT BOOKS:**

1. Computer Networks and rew, Tanenbaum, 4/e, Pearson
2. Data and computer communications, stallings, 8/e, PHI

**REFERENCE BOOKS**

1. Data communications and networking Forouzan, 4/e, TMH
2. Computer Networks – A System Approach, Peterson, Bruce Davie, 2/e, Harcourt Asia
3. Computer communications and networking technologies, Gallo, Hancock, Cengage
4. An Engineering approach to compute networking, Kesha, Pearson
5. Communication networks, 2/e, Leon-Garcia, TMH
7. Computer networks, C R Sarma, Jaico,
8. Understanding data communications, Held, 7/e, Pearson
UNIT-I

Introduction to Data mining, types of Data, Data Quality, Data Processing, Measures of Similarity and Dissimilarity, Exploring Data: Data Set, Summary Statistics, Visualization, OLAP and multi dimensional data analysis.

UNIT-II

Classification: Basic Concepts, Decision Trees and model evaluation: General approach for solving a classification problem, Decision Tree induction, Model over fitting: due to presence of noise, due to lack of representation samples, Evaluating the performance of classifier. Nearest Neighborhood classifier, Bayesian Classifier, Support vector Machines: Linear SVM, Separable and Non Separable case.

UNIT-III

Association Analysis: Problem Definition, Frequent Item-set generation, rule generation, compact representation of frequent item sets, FP-Growth Algorithms. Handling Categorical, Continuous attributes, Concept hierarchy, Sequential, Sub graph patterns

UNIT-IV

Clustering: Overview, K-means, Agglomerative Hierarchical clustering, DBSCAN, Cluster evaluation: overview, Unsupervised Cluster Evaluation using cohesion and separation, using proximity matrix, Scalable Clustering algorithm

UNIT-V

Web data mining: Introduction, Web terminology and characteristics, Web content mining, Web usage mining, web structure mining, Search Engines: Characteristics, Functionality, Architecture, Ranking of WebPages, Enterprise search
TEXT BOOKS:

1. Introduction to Data Mining: Pang-Ning tan, Michael Steinbach, Vipin kumar, Addision- Wesley.

2. Introduction to Data Mining with Case Studies: GK Gupta; Prentice Hall.

REFERENCE BOOKS:


2. Fundamentals of data warehouses, 2/e , Jarkke, Lenzerini, Vassiliou, Vassiliadis, Springer.


4. Data Mining , Concepts and Techniques, 2/e, Jiawei Han, Micheline Kamber, Elsevier, 2006.
UNIT-I

Mobile Communications: An Overview- Mobile Communication-guided transmission, unguided transmission- signal propagation frequencies, antennae, modulation, modulation methods and standards for voice-oriented data communication standards, modulation methods and standards for data and voice communication, mobile computing- novel applications and limitations, mobile computing architecture, mobile system networks.

Mobile devices and systems: Cellular networks and frequency reuse, Mobile smart phones, Smart mobiles and systems, Handheld pocket computers, Handheld devices, Smart systems, Limitations of mobile devices

UNIT-II

GSM and other 2G Architectures: GSM-services and system architecture, Radio interfaces of GSM, Protocols of GSM, Localization, Call handling, GPRS system architecture.

Wireless medium access control, CDMA, 3G and 4G communication: Modulation, Multiplexing, Controlling the medium access, Spread spectrum, Coding methods, IMT-2000 3G wireless communication standards, WCDMA 3G communication standards, CDMA 3G communication standards, Broadband wireless access, 4G networks.

UNIT-III

Mobile IP Network layer: IP and Mobile IP network layers: OSI layer functions, TCP/IP and Internet protocol, Mobile internet protocol; Packet delivery and Handover Management; Location Management: Agent Discovery; Mobile TCP

Introduction to Mobile Adhoc network: fixed infrastructure architecture, MANET infrastructure architecture; MANET: properties, spectrum, applications; Security in Ad-hoc network; Wireless sensor networks; sensor network applications.
UNIT-IV

Synchronization: Synchronization in mobile computing systems, Usage models for Synchronization in mobile application, Domain-dependant specific rules for data synchronization, Personal information manager, synchronization and conflict resolution strategies, synchronizer; Mobile agent: mobile agent design, aglets; Application Server

UNIT-V


TEXT BOOK:

UNIT-I

Overview of Compilation: Phases of Compilation – Lexical Analysis, Regular Grammar and regular expression for common programming language features, pass and Phases of translation, interpretation, bootstrapping, data structures in compilation.

UNIT-II

Parsing: Context free grammars, Top down parsing – Backtracking, LL (1), recursive descent parsing, Predictive parsing, Preprocessing steps required for predictive parsing.

Bottom up parsing: - Shift Reduce parsing, LR and LALR parsing, Error recovery in parsing, handling ambiguous grammar.

UNIT-III

Semantic analysis: Intermediate forms of source Programs – abstract syntax tree, Attributed grammars, Syntax directed translation, Conversion of popular Programming languages language Constructs into Intermediate code forms, Type checker.

Data flow analysis: Dataflow Analysis, Intermediate representation for flow analysis, Various dataflow analyses, Transformations using dataflow analysis Speeding up dataflow analysis, Alias analysis.

UNIT-IV

Symbol Tables: Symbol table format, organization for block structured languages, hashing, tree structures representation of scope information. Block structures and non block structure storage allocation: static, Runtime stack and heap storage allocation, storage allocation for arrays, strings and records.

Preprocessing the intermediate code, post processing the target code, machine code generation.

UNIT-V

**Code optimization:** Consideration for Optimization, Machine dependent and machine independent code optimization, Scope of Optimization, local optimization, loop optimization, frequency reduction, folding, DAG representation.

**Loop Optimizations:** Dominators, Loop-invariant computations, Induction variables, Array bounds checks, Loop unrolling

**TEXT BOOKS:**


**REFERENCE BOOKS:**

2. LEX & YACC, John R. Levine, Tony Mason, Doug Brown, O’reilly
4. Engineering a Compiler, Cooper, Linda, Elsevier.
UNIT-I

**Introduction:** Importance of user Interface, definition, importance of good design. Benefits of good design. A brief history of Screen design

**The graphical user interface:** Popularity of graphics, the concept of direct manipulation, graphical system, Characteristics, Web user – interface popularity, characteristics- Principles of user interface.

UNIT-II

**Design process:** Human interaction with computers, importance of human characteristics human consideration, Human interaction speeds, understanding business junctions.

UNIT-III

**Screen Designing :** Design goals, Screen planning and purpose, organizing screen elements, ordering of screen data and content, screen navigation and flow, Visually pleasing composition, amount of information, focus and emphasis, presentation information simply and meaningfully, information retrieval on web, statistical graphics, Technological consideration in interface design.

UNIT-IV

**Windows:** Windows new and Navigation schemes selection of window, selection of devices based and screen based controls.

**Components :** Components text and messages, Icons and increases, Multimedia, colors, uses problems, choosing colors.

UNIT-V

**Software tools :** Specification methods, interface, Building Tools.

**Interaction Devices:** Keyboard and function keys, pointing devices, speech recognition digitization and generation, image and video displays, drivers.
TEXT BOOKS:

2. The Essential guide to user interface design, 2/e, Wilbert O Galitz, Wiley DreamaTech.

REFERENCE BOOKS:

1. Designing the user interface. 4/e, Ben Shneidermann, PEA.
2. User Interface Design, Soren Lauesen, PEA.
UNIT-I

Introduction: What is Digital Image Processing, Examples of fields that use digital image processing, fundamental steps in digital image processing, components of image processing system.. Digital Image Fundamentals: A simple image formation model, image sampling and quantization, basic relationships between pixels.

UNIT-II

Image Enhancement In The Spatial Domain: Basic gray-level transformation, histogram processing, enhancement using arithmetic and logic operators, basic spatial filtering, smoothing and sharpening spatial filters.

UNIT-III

Image Restoration: A model of the image degradation/restoration process, noise models, restoration in the presence of noise—only spatial filtering, Weiner filtering, constrained least squares filtering, geometric transforms; Introduction to the Fourier transform and the frequency domain, estimating the degradation function.

Color Image Processing: Color fundamentals, color models.

UNIT-IV


Morphological Image Processing: Preliminaries, dilation, erosion, open and closing, hit or miss transformation, basic morphologic algorithms.

UNIT-V

Image Segmentation: Detection of discontinuous, edge linking and boundary detection, threshold, region–based segmentation.
TEXT BOOK:


REFERENCES:

2. Introduction to Digital Image Processing with Matlab, Alasdair McAndrew, Thomson Course Technology
UNIT-I


UNIT-II


UNIT-III

**ARTIFICIAL INTELLIGENCE :** Introduction, Knowledge Representation, Reasoning, Issues and Acquisition: Prepositional and Predicate Calculus Rule Based knowledge Representation Symbolic Reasoning Under Uncertainty Basic knowledge Representation Issues Knowledge acquisition,

Heuristic Search: Techniques for Heuristic search Heuristic Classification


UNIT-IV

UNIT -V


TEXTBOOKS:


REFERENCES:


UNIT I

**Introduction to UML:** The meaning of Object-Orientation, object identity, encapsulation, information hiding, polymorphism, genericity, importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, Architecture.

UNIT II

**Basic structural Modeling:** Classes, relationships, common mechanisms, diagrams, Advanced structural modeling: advanced relationships, interfaces, types & roles, packages, instances.

**Class & object diagrams:** Terms, concepts, examples, modeling techniques, class & Object diagrams.

UNIT III

**Collaboration diagrams:** Terms, Concepts, depicting a message, polymorphism in collaboration diagrams, iterated messages, use of self in messages.

**Sequence diagrams:** Terms, concepts, differences between collaboration and sequence diagrams, depicting synchronous messages with/without priority call back mechanism broadcast message.

UNIT IV

**Behavioral Modeling:** Interactions, use cases, use case diagrams, activity diagrams.

**Advanced Behavioral Modeling:** Events and signals, state machines, processes & threads, time and space, state chart diagrams.

UNIT V

**Architectural Modeling:** Terms, concepts, examples, modeling techniques for component diagrams and deployment diagrams.
TEXT BOOKS:


2. Fundamentals of Object Oriented Design in UML, Meilir Page-Jones, Addison Wesley

REFERENCE BOOKS:

1. Head First Object Oriented Analysis & Design, McLaughlin, SPD OReilly, 2006

2. Object oriented Analysis & Design Using UML, Mahesh, PHI

3. The Unified Modeling Language Reference Manual, 2/e, Rumbaugh, Grady Booch, etc., PEA

4. Object Oriented Analysis & Design, Satzinger, Jackson, Thomson

5. Object Oriented Analysis Design & implementation, Dathan, Ramnath, University Press

6. Object Oriented Analysis & Design, John Deacon, PEA

7. Fundamentals of Object Oriented Analysis and Design in UML, M Pages-Jones, PEA

UNIT-I

Introduction to Network Programming: OSI model, Unix standards, TCP and UDP & TCP connection establishment and Format, Buffer sizes and limitation, standard internet services, Protocol usage by common internet application.

UNIT-II

TCP client server: Introduction, TCP Echo server functions, Normal startup, terminate and signal handling server process termination, Crashing and Rebooting of server host shutdown of server host.

UNIT-III

Sockets: Address structures, value – result arguments, Byte ordering and manipulation function and related functions Elementary TCP sockets – Socket, connect, bind, listen, accept, fork and exec function, concurrent servers. Close function and related function.

I/O Multiplexing and socket options: I/O Models, select function, Batch input, shutdown function, poll function, TCP Echo server, getsockopt and setsockopt functions. Socket states, Generic socket option IPV6 socket option ICMPV6 socket option IPV6 socket option and TCP socket options.

UNIT-IV

Elementary UDP sockets: Introduction UDP Echo server function, lost datagram, summary of UDP example, Lack of flow control with UDP, determining outgoing interface with UDP.

Elementary name and Address conversions: DNS, gethost by Name function, Resolver option, Function and IPV6 support, uname function, other networking information.

UNIT-V

IPC: Introduction, File and record locking, Pipes, FIFOs streams and messages, Name spaces, system IPC, Message queues, Semaphores.
Remote Login: Terminal line disciplines, Pseudo-Terminals, Terminal modes, Control Terminals, rlogin Overview, RPC Transparency Issues.

TEXT BOOK:


REFERENCES:

1. UNIX Systems Programming using C++ T CHAN, PHI.
2. UNIX for Programmers and Users, 3rd Edition Graham GLASS, King abls, Pearson Education
UNIT – I

Introduction:

UNIT – II

Networks:

UNIT – III

Data Visualization:
Data Visualization, sequence visualization, structure visualization, user Interface, Animation Versus simulation, General Purpose Technologies.

Statistics:
Statistical concepts, Microarrays, Imperfect Data, Randomness, Variability, Approximation, Interface Noise, Assumptions, Sampling and Distributions, Hypothesis Testing, Quantifying Randomness, Data Analysis, Tool selection statistics of Alignment.

UNIT – IV

Pattern Matching:
Pairwise sequence alignment, Local versus global alignment, Multiple sequence alignment, Computational methods, Dot Matrix analysis, Substitution matrices, Dynamic Programming, Word methods, Bayesian methods, Multiple sequence alignment, Dynamic Programming, Progressive strategies, Iterative strategies, Tools,
UNIT-V

**Modeling and Simulation**:


**TEXT BOOKS**

2. Bio Informatics, Managing scientific Data, Lacroix, Terence Critchlow, Elsevier

**REFERENCE BOOKS**

3. Bio Informatics Methods and Applications, Rastogi, Mendiratta, Rastogi, PHI
UNIT-I

Introduction to virtualization and virtual machine, Virtualization in Cluster/grid context Virtual network, Information model & data model for virtual machine, Software as a Service (SaaS), SOA, On Demand Computing.

UNIT–II

Cloud computing: Introduction, What it is and What it isn’t, from Collaborations to Cloud, Cloud application architectures, Value of cloud computing, Cloud Infrastructure models, Scaling a Cloud Infrastructure, Capacity Planning, Cloud Scale.

UNIT–III

Data Center to Cloud: Move into the Cloud, Know Your Software Licenses, The Shift to a Cloud Cost Model, Service Levels for Cloud Applications

UNIT–IV


UNIT–V


Disaster Recovery, Disaster Recovery, Planning, Cloud Disaster Management

Case study: Types of Clouds, Cloudcentres in detail, Comparing approaches, Xen OpenNEbula, Eucalyptus, Amazon, Nimbus
TEXT BOOKS:


2. Cloud Application Architectures, 1st Edition by **George Reese** O’Reilly Media.

REFERENCE BOOK:

**I – II** | **L** | **P** | **Credits**
--- | --- | --- | ---
- | - | 2 |

**CSE LAB2**

Covering experiments from CN, DWDM and IS