Interactions

· An interaction is a behavior that is composed of a set of messages exchanged among a set of objects within a context to accomplish a purpose.
· A message specifies the communication between objects for an activity to happen. It has following parts: its name, parameters (if any), and sequence number.
· Objects in an interaction can be concrete things or prototypical things.

[image:]

A link is a semantic connection(path) among objects through which a message/s can be send. A link is an instance of an association. The semantics of link can be enhanced by using following prototypes as adornments
<<association>> – Specifies that the corresponding object is visible by association
<<self>> – Specifies that the corresponding object is visible because it is the dispatcher of the operation
<<global>> – Specifies that the corresponding object is visible because it is in an enclosing scope
<<local>> – Specifies that the corresponding object is visible because it is in a local scope
<<parameter>> – Specifies that the corresponding object is visible because it is a parameter
	
[image:]
message – indicates an action to be done. Complex expressions can be written on arbitrary string of message.Different types of messages are:
· Call -Invokes an operation on an object; an object may send a message to itself, resulting in the local invocation of an operation
· Return – Returns a value to the caller
· Send – Sends a signal to an object
· Create – Creates an object
· Destroy – Destroys an object; an object may commit suicide by destroying itself
[image:]

Sequencing
· a sequence is a stream of messages exchange between objects
· sequence must have a beginning and is rooted in some process or thread
· sequence will continue as long as the process or thread that owns it lives
Flow of control (2 types)
In each flow of control, messages are ordered in sequence by time and are visualized by prefixing the message with a sequence number set apart by a colon separator
· A procedural or nested flow of control is rendered by using a filled solid arrowhead,
· A flat flow of control is rendered by using a stick arrowhead
· Distinguishing one flow of control from another by prefixing a message’s sequence number with the name of the process or thread that sits at the root of the sequence.
· more-complex forms of sequencing, such as iteration, branching, and guarded messages can be modeled in UML.
[image:]

[image:]

Creation, Modification, and Destruction of links
Enabled by adding the following constraints to the element
· new – Specifies that the instance or link is created during execution of the enclosing interaction
· destroyed – Specifies that the instance or link is destroyed prior to completion of execution of the enclosing interaction
· transient – Specifies that the instance or link is created during execution of the enclosing interaction but is destroyed before completion of execution
Representation of interactions
Interaction goes together with objects and messages. represented by time ordering of its messages (sequence diagram), and by emphasizing the structural organization of these objects that send and receive messages (collaboration diagram)

Common Modeling Techniques

Modeling a Flow of Control
To model a flow of control,
· Set the context for the interaction, whether it is the system as a whole, a class, or an individual operation
· Set the stage for the interaction by identifying which objects play a role; set their initial properties, including their attribute values, state, and role
· If model emphasizes the structural organization of these objects, identify the links that connect them, relevant to the paths of communication that take place in this interaction
· In time order, specify the messages that pass from object to object As necessary, distinguish the different kinds of messages; include parameters and return values to convey the necessary detail of this interaction
· Also to convey the necessary detail of this interaction, adorn each object at every moment in time with its state and role
[image:]

Figure 6: Flow of Control by time
[image:]
Figure 7: Flow of Control by Organization

Interaction Diagrams

· An interaction diagram shows an interaction, consisting of a set of objects and their relationships, including the messages that may be dispatched among them
· Interaction diagrams commonly contain Objects, Links, Messages
· interaction diagrams are used to model the dynamic aspects of a system
· An interaction diagram is basically a projection of the elements found in an interaction.
· It may contain notes and constraints

Sequence Diagrams
· A sequence diagram is an interaction diagram that emphasizes the time ordering of messages
· Graphically it is a table that shows objects arranged along the X axis	and messages ordered in increasing time along the Y axis
· place the objects that participate in the interaction at the top of your diagram, across the X axis, object that initiates the interaction at the left, and increasingly more subordinate objects to the right
· place the messages that these objects send and receive along the Y axis, in order of increasing time from top to bottom.
Sequence diagrams have two features that distinguish them from collaboration diagrams
· First, there is the object lifeline which is a vertical dashed line that represents the existence of an object over a period of time
· Second, there is the focus of control which is a tall, thin rectangle that shows the period of time during which an object is performing an action, either directly or through a subordinate procedure

· [image:]

	Figure: Sequence Diagram

Collaboration Diagrams
· A collaboration diagram is an interaction diagram that emphasizes the structural organization of the objects that send and receive messages
· Graphically it is a collection of vertices and arcs
· more-complex flows, involving iterations and branching are modeled as [i := 1n] (or just), [x > 0]

Collaboration diagrams have two features that distinguish them from sequence diagrams
· First, there is the path to indicate how one object is linked to another, attach a path stereotype to the far end of a link such as local, parameter, global, and self
· Second, there is the sequence number to indicate the time order of a message denoted by prefixing the message with a number, nesting is indicated by Dewey decimal numbering (eg:- 1 is the first message; 1.1 is the first message nested in message 1.)

[image:]
Figure : Collaboration Diagram

Semantic Equivalence
sequence diagrams and collaboration diagrams are semantically equivalent that means conversion to the other is possible without any loss of information.
Common Modeling Techniques

Modeling Flows of Control by Time Ordering
To model a flow of control by time ordering,

· Set the context for the interaction, whether it is a system, subsystem, operation, or class or one scenario of a use case or collaboration
· Set the stage for the interaction by identifying which objects play a role in the interaction.
· Set the lifeline for each object. Objects will persist through the entire interaction. For those objects that are created and destroyed during the interaction, set their lifelines, as appropriate, and explicitly indicate their birth and death with appropriately stereotyped messages
· Starting with the message that initiates this interaction, lay out each subsequent message from top to bottom between the lifelines, showing each message’s properties .
· If you need to visualize the nesting of messages or the points in time when actual computation is taking place, adorn each object’s lifeline with its focus of control
· If you need to specify time or space constraints, adorn each message with a timing mark and attach suitable time or space constraints
· If you need to specify this flow of control more formally, attach pre- conditions and post-conditions to each message

10

[image:]

Figure : Modeling Flows of Control by Time Ordering

Modeling Flows of Control by Organization
To model a flow of control by organization

· Set the context for the interaction, whether it is a system, subsystem, operation, or class or one scenario of a use case or collaboration
· Set the stage for the interaction by identifying which objects play a role in the interaction .
· 	Set the initial properties of each of these objects If the attribute values, tagged values, state or role of any object changes in significant ways over the duration of the interaction, place a duplicate object on the diagram, update it with these new values, and connect them by a message stereotyped as become or copy .
· Specify the links among these objects, along which messages may pass
1. Lay out the association links first; these are the most important ones, because they represent structural connections
2. Lay out other links next, and adorn them with suitable path stereotypes (such as global and local) to explicitly specify how these objects are related to one another
· Starting with the message that initiates this interaction, attach each subsequent message to the appropriate link, setting its sequence number, as appropriate Show nesting by using Dewey decimal numbering.
· If you need to specify time or space constraints, adorn each message with a timing mark and attach suitable time or space constraints.
· If you need to specify this flow of control more formally, attach pre- and post-conditions to each message

The Figure shows a collaboration diagram that specifies the flow of control involved in registering a new student at a school, with an emphasis on the structural relationships among these objects
[image:]

Figure 5: Modeling Flows of Control by Organization

Sequence diagram emphasizes on time sequence of messages and collaboration diagram emphasizes on the structural organization of the objects that send and receive messages.

So the purposes of interaction diagram can be describes as:

· To capture dynamic behaviour of a system.

· To describe the message flow in the system.

· To describe structural organization of the objects.

· To describe interaction among objects.
image4.jpeg
sequence number JReseaps

2: clickAt(p) : putRecentPick(l)

c_. Controller

: Cache

54 nested flow of control

findAl(p)

image5.jpeg
‘sequence number
sequence number mossecer. S5

1 litHandset() assertCall()

Lo N\

c: Caller elephone

flat flow of control

image6.emf

image7.emf

image8.emf

image9.emf

image10.jpeg
s Caller : Switch
| lftReceiver
setDialTone()
{dialing executionTime < 30 sec}
* dialDigit(d)
i routeCall(s, n)
dialing
«creater
connect(r, s)
conngel(r)

L]

Callers s and r may
exchange information
after both are connected

image11.jpeg
2 addStudenl(s)
>

- RegistrarAgent - School
;é;zf;:; 3.1 : getSchedule()
—»
«ocalh, ;
s student |0 s - Student

registered = False ——— | regislered = True
3.4: «become»

a2 addqsy \\‘3 3 add(s)

c1: Course| 2 Course|

{association} | {association}

image1.jpeg
sequence number

12 getPostionAtTime(t)

—— .
L. AirTrafficPlanner p : FlightPlan
()

object object
link

image2.jpeg
ciass class

Person I Gompany”

(esocton L
N, 8

employee employer

+ setCompensation(s : Salary)
vassign(d : Depariment) &~_| oo ion
i message

assign(development)

Company

named object - ‘anonymous object

image3.jpeg
c.Client *| Pl t

create ~ e PO [Ticketagent' |

e
actual pafametor | _setineray() i caicyiateRoute()
{7 :T‘
call —T i
i
u

return value call
m (local invocation)

send

