
UNIT-V

B.Tech(CSE)-V SEM

Dept of CSE 1

UNIT-V : UNIX Process
• What is a process.
• Process structure.
• Process identifiers.
• Starting a new process, Waiting for a process.
• Zombie process.• Zombie process.
• System call interface for process

management- fork, vfork, exit, wait, waitpid,
exec system call.

Dept of CSE 2

What is a process?
 A process is a program in execution in memory or in other

words, an instance of a program in memory.
 Any program executed creates a process.
 A program can be a command, a shell script, or any binary

executable or any application.
• Process attributes:• Process attributes:

A process has some properties associated to it:
• PID : Process-Id. Every process created in Unix/Linux has an identification number

associated to it which is called the process-id.
 PPID : Parent Process Id: Every process has to be created by some other process. The

PID of the parent process is called the parent process id(PPID).
 TTY: Terminal to which the process is associated to. Every command is run from a

terminal which is associated to the process.
 UID: User Id- The user to whom the process belongs to.
 File Descriptors: File descriptors related to the process: input, output and error file

descriptors.

Dept of CSE 3

Process Structure:
 The memory allocated to UNIX processes can be

divided into three logical parts:
 Text Segment -The text section contains the machine-

language code to be executed by the machine on behalf
of the process. of the process.

 Data Segment-The data section contains a
representation of data preset to initial values. It also
includes the amount of space to be allocated by the
kernel for uninitialized data (known for historic reasons
as bss).

 Stack Segment -The stack area usually contains
procedure-based, downward growing, data frames.

Dept of CSE 4

Process Structure:
 The exact information present in any process structure will

vary from one implementation to another, but all process
structures minimally include:
 Process id
 Parent process id (or pointer to parent's process structure) Parent process id (or pointer to parent's process structure)
 Pointer to list of children of the process
 Process priority for scheduling, statistics about CPU usage

and last priority.
 Process state
 Signal information (signals pending, signal mask, etc.)
 Machine state
 Timers

Dept of CSE 5

Process Structure:
 Usually the process structure is a very large object containing

much more additional information.
 Typical substructures referenced in the process structure may

include such things as the:
 Process's group id
 User ids associated with the process
 Memory map for the process (where all segments start, and so

on)
 File descriptors
 Accounting information
 Other statistics that are reported such as page faults, etc.
 Signal actions
 Pointer to the user structure.

Dept of CSE 6

Process Identifiers:
 Every process has a unique process ID, a non-negative integer. As processes terminate,

their IDs can be reused.
 Most UNIX systems implement algorithms to delay reuse so that newly created processes

are assigned IDs different from those used by processes that terminated recently.
 This prevents a new process from being mistaken for the previous process to have used

the same ID.
 There are some special processes, but the details differ from implementation to

implementation:implementation:
 Process ID 0: scheduler process (often known as the swapper), which is part of the

kernel and is known as a system process
 Process ID 1: init process, invoked by the kernel at the end of the bootstrap

procedure.
 It is responsible for bringing up a UNIX system after the kernel has been

bootstrapped. init usually reads the system-dependent initialization files
(/etc/rc* files or /etc/inittab and the files in /etc/init.d) and brings the system to a
certain state.

 It never dies.
 It is a normal user process, not a system process within the kernel.
 It runs with superuser privileges.

Dept of CSE 7

Process Identifiers (contd)
 Each UNIX System implementation has its own set of kernel processes that

provide operating system services.
 On some virtual memory implementations of the UNIX System, process ID2 is

the pagedaemon. This process is responsible for supporting the paging of the
virtual memory system.

 In addition to the process ID, there are other identifiers for every process. In addition to the process ID, there are other identifiers for every process.
 The following function return these identifiers:

Dept of CSE 8

#include <sys/types.h>
#include <unistd.h>
pid_t getpid(void); /* Returns: process ID of calling process */
pid_t getppid(void); /* Returns: parent process ID of calling process */
uid_t getuid(void); /* Returns: real user ID of calling process */
uid_t geteuid(void); /* Returns: effective user ID of calling process */
gid_t getgid(void); /* Returns: real group ID of calling process */
gid_t getegid(void); /* Returns: effective group ID of calling process */

Starting a new process- fork()
 The only way a new process is created by the Unix kernel is

when an existing process calls the fork function.

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

 The new process created by fork is called the child process.

 This function is called once but returns twice.
 The only difference in the returns is that the return value in

the child is 0, whereas the return value in the parent is the
process ID of the new child.

Dept of CSE 9

pid_t fork(void);

/* Returns: 0 in child, process ID of child in parent, −1 on error */

Starting a new process (Contd)
 The reason the child’s process ID is returned to the parent is because a process

can have more than one child, so there is no function that allows a process to
obtain the process IDs of its children.

 The reason fork returns 0 to the child because a process can have only a single
parent, and the child can always call getppid to obtain the process ID of its
parent.

 Both the child and the parent continue executing with the instruction that Both the child and the parent continue executing with the instruction that
follows the call to fork. The child is a copy of the parent. For example, the child
gets a copy of the parent’s data space, heap, and stack. Note that this is a copy
for the child the parent and the child do not share these portions of memory.
The parent and the child do share the text segment.

 Copy-on-write (COW) is used on modern implementations: a complete copy of
the parent’s data, stack and heap is not performed. The shared regions are
changed to read-only by the kernel. The kernel makes a copy of that piece of
memory only if either process tries to modify these regions.

Dept of CSE 10

Characteristic of fork()- File Sharing
 One characteristic of fork is that all file descriptors that are open in the

parent are duplicated in the child, because the dup function had been
called for each descriptor.

 The parent and the child shareafile table entry for every open
descriptor.

 It is important that the parent and the child share the same file offset. It is important that the parent and the child share the same file offset.
Otherwise, this type of interaction would be more difficult to
accomplish and would require explicit actions by the parent.

 There are two normal cases for handling the descriptors after a fork:
 The parent waits for the child to complete.
 Both the parent and the child go their own ways. After the fork, both the

parent and child close the descriptors that they don't need, so neither
interferes with the other’s open descriptors. This scenario is often found
with network servers.

Dept of CSE 11

fork()- File Sharing
 For a process that has three different files opened for standard input,

standard output, and standard error, on return from fork, we have the
arrangement shown below:

Dept of CSE 12

fork()- charactreristics
 Besides the open files, other properties of the parent are inherited by

the child:
 Real user ID, real group ID, effective user ID, and effective group ID
 Supplementary group IDs
 Process group ID
 Session ID
 Controlling terminal Controlling terminal
 The set-user-ID and set-group-ID flags
 Current working directory
 Root directory
 File mode creation mask
 Signal mask and dispositions
 The close-on-exec flag for any open file descriptors
 Environment
 Attached shared memory segments
 Memory mappings
 Resource limits

Dept of CSE 13

fork()- Characteristics
 The differences between the parent and child are:

 The return values from fork are different.
 The process IDs are different.
 The two processes have different parent process IDs:

 the parent process ID of the child is the parent the parent process ID of the child is the parent
 the parent process ID of the parent doesn’t change.

 The child’s tms_utime, tms_stime, tms_cutime, and
tms_cstime values are set to 0.

 File locks set by the parent are not inherited by the child.
 Pending alarms are cleared for the child.
 The set of pending signals for the child is set to the empty set

Dept of CSE 14

fork()- Characteristics
 The two main reasons for fork to fail:

 If too many processes are already in the system, which usually means that
something else is wrong

 If the total number of processes for this real user ID exceeds the system’s
limit. (CHILD_MAX specifies the maximum number of simultaneous
processes per real user ID.)processes per real user ID.)

 The two uses for fork:
 When a process wants to duplicate itself so that the parent and the child

can each execute different sections of code at the same time.
 This is common for network servers—the parent waits for a service

request from a client. When the request arrives, the parent calls fork and
lets the child handle the request. The parent goes back to waiting for the
next service request to arrive.

 When a process wants to execute a different program.
 This is common for shells. In this case, the child does an exec right after

it returns from the fork.
Dept of CSE 15

vfork() system call:
 The function vfork has the same calling sequence and

same return values as fork, but the semantics of the two
functions differ.

 vfork is intended to create a new process when the
purpose of the new purpose is to exec a new program.purpose of the new purpose is to exec a new program.

 The vfork function creates the new process, just like fork,
without copying the address space of the parent into the
child, as the child won’t refer that address space; the child
simply calls exec (or exit) right after the vfork.

 Instead, the child runs in the address space of the parent
until it calls either exec or exit.

Dept of CSE 16

vfork() system call:
 This optimization is more efficient on some implementations of

the UNIX System, but leads to undefined results if the child:

 modifies any data (except the variable used to hold the return value
from vfork)
makes function calls makes function calls

 returns without calling exec or exit

 Another difference between the two functions is that vfork
guarantees that the child runs first, until the child calls exec or
exit.

 When the child calls either of these functions, the parent
resumes.

Dept of CSE 17

exit() system call:
 A process can terminate normally in five ways :

1. Executing a return from the main function. This is equivalent to
calling exit.

2. Calling the exit function, which includes the calling of all exit
handlers that have been registered by calling atexit and closing
all standard I/O streams.all standard I/O streams.
 ISO C does not deal with file descriptors, multiple processes (parents and children),

and job control. The definition of this function is incomplete for a UNIX system.

3. Calling the _exit or _Exit function.
 _Exit: defined by ISO C to provide a way for a process to terminate without running

exit handlers or signal handlers
 _exit: called by exit and handles the UNIX system-specific details; _exit is specified by

POSIX.1.
 Whether standard I/O streams are flushed depends on the implementation.
 On UNIX systems, _Exit and _exit are synonymous and do not flush standard I/O

streams.

Dept of CSE 18

exit() system call:
4. Executing a return from the start routine of the last thread in the

process.
 The return value of the thread is not used as the return value of the process.

When the last thread returns from its start routine, the process exits with a
termination status of 0.

5. Calling the pthread_exit function from the last thread in the
process.process.

 The three forms of abnormal termination:
 Calling abort. This is a special case of the next item, as it generates

the SIGABRT signal.
 When the process receives certain signals. The signal can be generated by:

 the process itself, e.g. calling the abort function
 some other processes
 the kernel, e.g. the process references a memory location not within its address space or

tries to divide by 0
 The last thread responds to a cancellation request. By default, cancellation occurs in

a deferred manner: one thread requests that another be canceled, and sometime later
the target thread terminates. 19

exit() system call:
 Regardless of how a process terminates, the same code in the

kernel is eventually executed.

 This kernel code closes all the open descriptors for the process,
releases the memory that it was using, and so on.

 The terminating process is to be able to notify its parent how it
terminated by passing an exit status as the argument to oneterminated by passing an exit status as the argument to one
of the three exit functions.

 In the case of an abnormal termination, the kernel (not the
process) generates a termination status to indicate the reason for
the abnormal termination.

 In any case, the parent of the process can obtain the termination
status from either the wait or the waitpid function.

Dept of CSE 20

exit() system call:
 Exit status vs. termination status:

 Exit status: is the argument to one of the three exit functions
or the return value from main.

 Termination status: the exit status is converted into a
termination status by the kernel when _exit is finally called.
If the child terminated normally, the parent can obtain the If the child terminated normally, the parent can obtain the
exit status of the child.

Dept of CSE 21

Orphan process:
 A process whose parent process no more exists i.e. either finished or
terminatedwithout waiting for its child process to terminate is called
an orphan process.

 A process can be orphaned intentionally or unintentionally.
 An intentionally orphaned process runs in the background without

any manual support. This is usually done to start an indefinitely running any manual support. This is usually done to start an indefinitely running
service or to complete a long-running job without user attention.

 An unintentionally orphaned process is created when its parent
process crashes or terminates. Unintentional orphan processes can be
avoided using the process group mechanism.

 The orphan process is soon adopted by init process, once its
parent process dies.

Dept of CSE 22

Demonstration of orphan process:
#include<stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{

// Create a child process
int pid = fork();int pid = fork();

if (pid > 0)
printf("This is parent process\n");

// Note that pid is 0 in child process
// and negative if fork() fails
else if (pid == 0)
{

sleep(10);
printf("\nThis is child process\n");

}

return 0;
}

Dept of CSE 23

Parent process finishes execution while the
child process is running. The child process
becomes orphan.

Zombie process:
 A process cannot leave the system until parent process

accepts its termination code
 If parent process is dead; init adopts process and

accepts code
 If the parent process is alive but is unwilling to accept If the parent process is alive but is unwilling to accept

the child's termination code (never executes wait()),
the child process will remain a zombie process.

 Zombie processes do not take up system resources:
 No data, code, stack
 But use an entry in the system's fixed-size process table

Dept of CSE 24

Demonstration of Zombie Process:
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{

int pid = fork();

if (pid > 0)if (pid > 0)
{

sleep(10);
printf("\nThis is the Parent Process\n");
}

else{
printf("This is a child process\n");
exit(0);
}

return 0;
}

Dept of CSE 25

Waiting for a Process- wait() & waitpid()
 When a process terminates, either normally or

abnormally, the kernel notifies the parent by sending
the SIGCHLD signal to the parent.

 Because the termination of a child is an asynchronous
event (it can happen at any time while the parent is
running).running).

 This signal is the asynchronous notification from the
kernel to the parent.

 The parent can choose to ignore this signal, or it can
provide a function that is called when the signal
occurs: a signal handler.

 The default action for this signal is to be ignored.
Dept of CSE 26

wait() and waitpid():
 A process that calls wait or waitpid can:

 Block, if all of its children are still running
 Return immediately with the termination status of a

child, if a child has terminated and is waiting for its
termination status to be fetchedtermination status to be fetched

 Return immediately with an error, if it doesn’t have any
child processes

 If the process is calling wait because it received
the SIGCHLD signal, we expect wait to return
immediately. But if we call it at any random point in
time, it can block.

Dept of CSE 27

wait() and waitpid():

 The differences between these two functions are:

#include <sys/wait.h>
pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *statloc, int options);

/* Both return: process ID if OK, 0 (see later), or −1 on error */

 The differences between these two functions are:
 The wait function can block the caller until a child

process terminates, whereas waitpid has an option that
prevents it from blocking.

 The waitpid function doesn’t wait for the child that
terminates first; it has a number of options that control
which process it waits for.

Dept of CSE 28

wait() and waitpid():
 Macros to examine the termination status returned by wait and waitpid:

Macro Description
WIFEXITED(status) True if status was returned for a child that terminated normally.

WIFSIGNALED(status) True if status was returned for a child that terminated abnormally, by receipt of a
signal that it didn’t catch.

WIFSTOPPED(status) True if status was returned for a child that is currently stopped.

Dept of CSE 29

WIFCONTINUED(status) True if status was returned for a child that has been continued after a job control stop
(XSI option; waitpid only).

Wait for a specific Process: waitpid()
 waitpid function can be used to wait for a specific process.
 The interpretation of the pid argument for waitpid

depends on its value:
 pid == −1 Waits for any child process. In this

respect, waitpid is equivalent to wait.
 pid > 0 Waits for the child whose process ID equals pid. pid > 0 Waits for the child whose process ID equals pid.
 pid == 0 Waits for any child whose process group

ID equals that of the calling process.
 pid < −1 Waits for any child whose process group ID

equals the absolute value of pid.

 The waitpid function returns the process ID of the child
that terminated and stores the child’s termination status in
the memory location pointed to by statloc.

Dept of CSE 30

wait() and waitpid():
 Errors of wait and waitpid

 With wait, the only real error is if the calling process has no
children.

 With waitpid, it’s possible to get an error if the specified process or
process group does not exist or is not a child of the calling process

 The waitpid function provides three features that aren’t
provided by the wait function:provided by the wait function:
 The waitpid function lets us wait for one particular process,

whereas the wait function returns the status of any terminated
child.

 The waitpid function provides a nonblocking version of wait.
There are times when we want to fetch a child’s status, but we don’t
want to block.

 The waitpid function provides support for job control with
the WUNTRACED and WCONTINUED options.

Dept of CSE 31

exec() system call:
 One use of the fork function is to create a new process

(the child) that then causes another program to be
executed by calling one of the exec functions.
 When a process calls one of the exec functions, that process is

completely replaced by the new program which starts executing at
its main function.its main function.

 The process ID does not change across an exec, because a new
process is not created.

 exec merely replaces the current process (its text, data, heap, and
stack segments) with a new program from disk.

Dept of CSE 32

exec() system call:
 There are seven different exec functions:

#include <unistd.h>
int execl(const char *pathname, const char *arg0, ... /* (char *)0 */);
int execv(const char *pathname, char *const argv[]);
int execle(const char *pathname, const char *arg0, ... /* (char *)0, char
*const envp[] */);

The first four take a pathname argument, the next two take a
filename argument, and the last one takes a file descriptor
argument. Dept of CSE 33

*const envp[] */);
int execve(const char *pathname, char *const argv[], char *const
envp[]);
int execlp(const char *filename, const char *arg0, ... /* (char *)0 */);
int execvp(const char *filename, char *const argv[]);
int fexecve(int fd, char *const argv[], char *const envp[]);

/* All seven return: −1 on error, no return on success */

exec() family of system calls:

Dept of CSE 34

