
UNIT-IV

B.Tech(CSE)-V SEM

Dept of CSE 1

UNIT-IV : Regular Expressions

 grep,egrep, fgrep

 Sed- line addressing, context addressing, text editing,
substitution.

 Programming with awk: syntax of awk programming
statement, structure of awk script, variables ,records
fields, and special variables, patterns, operators ,simple
input files, awk programming- simple awk
programming, awk control structures, looping,
functions in awk.

Dept of CSE 2

grep
• grep is an acronym for “globally search a regular expression

and print it”

• The grep filter searches for a particular pattern of
characters and displays all the lines that contain the
pattern. The pattern that is searched for is referred to as a
regular expression. The grep filter can not be used withoutregular expression. The grep filter can not be used without
specifying a regular expression.

syntax:
$grep [options] regular-expr [filename] (or)
$grep regular-expr [filename] (or)
$grep regular-expr

Dept of CSE 3

grep (Contd..)
Example:

$grep job
work
job
job
tasktask
[ctrl+d]
$

In this example grep searches for the word job, when user
types in the words work, job and task. When it finds the
word job it displays the word job again on the standard
output.

Dept of CSE 4

Example Description

$grep “rao” xyz This displays those lines of the file xyz having string “rao”

$grep “[rR]ao” xyz This displays those lines of the file xyz having string
either “rao” (or) “Rao”

$grep “^rao” xyz This displays those lines of the file xyz , which starting
with string “rao”

$grep “rao$” xyz This displays those lines of the file xyz , which ending

grep (Contd..)

Dept of CSE 5

$grep “rao$” xyz This displays those lines of the file xyz , which ending
with “rao”

$grep “^rao$” xyz This displays those lines of the file xyz , which contains
the string “rao” only. No more characters in the line.

$grep “^$” xyz This displays empty lines of the file xyz.

$grep “^[rR]ao” xyz This displays those lines of the file xyz having (starts)
with either “rao” (or) “Rao”

Options:
grep (Contd..)

option Description
-n This prints each line of matching pattern, along with its line

number. The number is printed at the beginning of the file.

-c This prints only a count of the lines that match a pattern.

-v This prints all the lines that do not match the pattern specified by
the Regular Expression.

Dept of CSE 6

the Regular Expression.

NOTE: options must be used / specified before the Regular Expression.
Options can also be combined. For example, -n and –v can be used together
as -nv .

Example: Searching for a string in Multiple files.
$ grep “rao” file *.*

The above command will search for “rao” string in multiple files at atime. It
searches in all files with file1.txt, file2.txt and along with different
extensions too like file1.c, file2.sh and so on.

fgrep (fixed grep)
• fgrep is used for a group of strings. One string has to be

separated from other by a new line.
Syntax:

$fgrep ‘regularexpr1
> regularexpr2
……….……….
> regularexprn’ filename

Example:
$fgrep ‘rao
>ram
>raju’ sample

This command displays those lines having either rao/ram/raju. fgrep will
not accept regular expression.

Dept of CSE 7

egrep (extended grep)
 egrep stands for extended grep. This is so because it has

two additional metacharacters.

 The two additional metacharacters are the plus (+)
character and the question mark (?) character.

 This command is the most powerful member of the grep
command family.

 The foremost advantage of this command is that multiple
search patterns can be handled very easily. The pipe (|)
character is used to mention alternate patterns.

Dept of CSE 8

egrep (extended grep) Contd..
Syntax:

$grep -E Regularexpr filename

(or)

$egrep Regularexpr filename

+ -> matches one or more occurrences of the previous character.+ -> matches one or more occurrences of the previous character.

? -> matches zero or one occurrences of the previous character.

For example: b+ matches b,bb,bbb etc, but it does not
match nothing – unlike b*. The expression b? matches
either a single instance of b (or) nothing.

Dept of CSE 9

Example 1:
$egrep “true?man” Hai
trueman
truman

Example 2: Matching Multiple Patterns (|, (and))

egrep (extended grep) Contd..

Example 2: Matching Multiple Patterns (|, (and))
a) $egrep ‘woodhouse | woodcock’ hai

woodcock
woodhouse

b) $egrep ‘wood(house | cock)’ hai
woodcock
woodhouse

Dept of CSE 10

egrep (extended grep) Contd..
Expression Significance

ch+ Matches one or more occurrences of character ch

ch? Matches zero or one occurrences of character ch

expr1 | expr2 Matches expr1 or expr2

(x1|x2)x3 Matches x1x3 (or)x2x3

Examples:

Dept of CSE 11

Expression Description

g+ At least one g

g? Nothing (or) one g

GIF / JPEG Matches expr1 or expr2GIF (or) JPEG

(lock/ver) wood Matches lockwood (or) verwood

Examples:

Sed: The stream Editor
 Sed is a multipurpose tool which combines the work of several

filters. It is derived from ed, the original unix editor. Sed
performs non-interactive operations on a data stream-hence
its name.

 Sed function performs lot of functions on files like, searching,
find , replace, insertion or deletion.find , replace, insertion or deletion.

 Most common use of sed command in unix is for substitution
(or) find and replace.

 By using sed we can edit files even without opening it, which is
much quicker way to find and replace something in file, than
first opening that file in vi editor and then changing it.

Dept of CSE 12

Sed: The stream Editor (Contd…)
 sed is a powerful text stream editor, can do insertion,

deletion, search and replace (substitution).

 sed command in unix supports regular expression which
allows it perform complex pattern matching.

Syntax:
$sed options ‘address action’ file(s)

 Address specifies either one line number to select a single
line or a set of two lines, to select a group of contiguous lines.

 Action specifies print, insert, delete, substitute the text.

Dept of CSE 13

Sed: The stream Editor (Contd…)
 sed processes several instructions in a sequential manner.

 Each instruction operates on the output of the previous
instruction.

 In this context, two options are relevant, and probably they In this context, two options are relevant, and probably they
are the only ones we will use with sed –
 the –e option that lets us use multiple instructions, and
 the –f option to take instructions from a file.

 Both options are used by grep in identical manner.

Dept of CSE 14

sed: The stream Editor (Contd…)
Command Description

a\ Append lines to output until one not ending in \.

c\ Change lines to following text as in a

d Delete line; read next input line.

i\ Insert following text before next output

p Prints line(s) on standard output

Q quit

Dept of CSE 15

Q quit

r file read file, copy contents to output

w file write line to file

3, $p Prints lines 3 to end (-n option required)

$!p Prints all lines except last line (-n option required)

s/s1/s2 Replaces first occurrence of expression s1 in all lines with expression s2

10,20s/-/:/ Replaces first occurrence of - in lines 10 to 20 with a :

s/s1/s2/g Replaces all occurrence of expression s1 in all lines with expression s2

s/-/:/g Replaces all occurrence of - in all lines with a :

sed: The stream Editor (Contd…)
Addresses: Addresses may be either line addresses or context addresses.
(1) Line number addresses: A line address is a decimal integer. As each

line is read from the input, a line number counter is incremented. A
line address selects a line when the line number is equal to line number
counter. The counter runs cumulatively through multiple input files; it
is not reset when a new input file is opened. As a special case, the
character $ matches the last input line.

(2) Context Addresses: A context address is a regular expression enclosed (2) Context Addresses: A context address is a regular expression enclosed
in slashes('/'). Each line that matches the regular expression is operated on.

Dept of CSE 16

Sed: Line Editor (Contd..)
Examples:
Command 1: Display line multiple times

sed '2p' file.txt

sed -n '3p' file.txt #specific line => -n

sed -n '5p‘ file.txt

Command 2: Display last line[$]

sed '$p‘ file.txt #includes last line again along with original

sed -n ‘ $p' file.txt #Specific

Dept of CSE 17

Sed: Line Editor (Contd..)
Examples:
Command 3: Range of lines

$sed –n ‘9,11p’ sample #selects lines from anywhere of the file, between lines from 9 to 11.

$sed –n ‘1,2 p
7,9 p
$p’ sample

Command 4: Do not display specific lines
$sed -n '2!p‘ file.txt

$sed -n '2,4!p' file.txt #do not display specific range of lines(!)

Dept of CSE 18

Sed: Line Editor(Contd…)

Using Multiple Instructions (-e and –f):
(i) –e : This option allows you to enter as many instructions as you wish, each

preceded by the option.

(ii) -f: This option is used to direct the sed to take its instructions from the file
using the command.using the command.

Example:
$sed -n -e ‘1,2p’ -e ‘7,9’ -e ‘$p’ sample

Dept of CSE 19

sed- Context Addressing
Command 1: Display lines having a specific word

sed -n '/Amit/p' file.txt

sed -n '/[Aa]mit/p' file.txt (Ignoring Case)

Command 2: Search lines and store in the file

sed -n '/[Aa]/p' file.txtsed -n '/[Aa]/p' file.txt

sed –n '/[Aa]/w result.txt' file.txt (Write to result.txt)

Command 3: Replace context from the file

sed 's/10000/1500/' file.txt

sed 's/hello/hi/' file.txt

Dept of CSE 20

sed- Context Addressing
 Command 4: Replace multiple context in one command

sed -e 's/100/150/' -e 's/200/250/' file.txt

 Command 5: Replace data by matching some condition

sed '/Sai/s/100/150/' file.txt

sed '/Msd/s/100/150/' file.txt [Check the match(Msd) and Substitute]

 Command 6: Delete data
sed '/sai/d' file.txt

sed '/[Aa]mit/d' file.txt

Dept of CSE 21

sed- Text editing
 sed supports inserting (i), appending (a), changing (c) and deleting (d)

commands for the text.

$ sed ‘1i\
#include <stdio.h>\
#include <unistd.h>
’sample.c > $$’sample.c > $$

 The above script will add two include lines in the beginning of
sample.c file.

 Sed identifies the line without the \ as the last line of input. Redirected
to $$ temporary file.

Dept of CSE 22

sed- Text editing
 To insert a blank line after each line of the file is printed

(double spacing text), we have,

sed ‘a\
’ emp.lst

 Deleting lines (d)
sed ‘/director/d’ emp.lst > olist orsed ‘/director/d’ emp.lst > olist or
sed –n ‘/director/!p’ emp.lst > olist

 Selects all lines except those containing director, and
saves them in olist

 Note that –n option not to be used with d

Dept of CSE 23

sed- substitution
 Substitution is the most important feature of sed, and this is one job

that sed does exceedingly well.
[address]s/expression1/expression2/flags

 Just similar to the syntax of substitution in vi editor, we use it in sed
also.

sed ‘s/|/:/’ emp lst | head –n 2
2233:a.k.shukla |gm |sales |12/12/52|60002233:a.k.shukla |gm |sales |12/12/52|6000

9876:jai sharma |director|production|12/03/50|7000
 In the above output, only the first instance of | in a line has been

replaced. We need to use the g (global) flag to replace all the pipes.
sed ‘s/|/:/g’ emp.lst | head –n 2

Dept of CSE 24

sed- substitution
 We can limit the vertical boundaries too by specifying

an address (for first three lines only).
sed ‘1,3s/|/:/g’ emp.lst

 Replace the word director with member in the first five
lines of emp.lstlines of emp.lst

sed ‘1,5s/director/member/’ emp.lst
 sed also uses regular expressions for patterns to be

substituted.
 To replace all occurrence of agarwal, aggarwal and

agrawal with simply Agarwal, we have,
sed ‘s/[Aa]gg*[ar][ar]wal/Agarwal/g’ emp.lst

Dept of CSE 25

sed- substitution
 We can also use ^ and $ with the same meaning. To

add 2 as prefix to all emp-ids,
sed ‘s/^/2/’ emp.lst | head –n1

22233 | a.k.shukla | gm | sales | 12/12/52 | 600022233 | a.k.shukla | gm | sales | 12/12/52 | 6000
 To add .00 suffix to all salary,

sed ‘s/$/.00/’ emp.lst | head –n1
2233 | a.k.shukla | gm | sales | 12/12/52 | 6000.00

Dept of CSE 26

The awk- Pattern Scanning and Processing Language:

 awk is a filter program that was originally developed in
1977 by Aho, Weinberger and Kernighan as a pattern-
scanning Language.

 The name awk is derived from the first letters of it’s
developers names.developers names.

 It is a programming language with C-like control
structures, functions and variables.

 It was designed to work with structured files and text
patterns.

 One of the very important feature of awk filter is it
operates at the field level.

Dept of CSE 27

The awk command: Features
 Field- Oriented file processing.
 Regular Expressions.
 Pre-defined Variables.
 Numeric Operations. Numeric Operations.
 Comparison operators.
 Arrays.
 Control statements.
 Report Generation.

Dept of CSE 28

Syntax of awk programming statement:
 The basic syntax of awk as a command is:

$awk [options] ‘program’ filelist
 Where

 Use of options is optional.
 Filelist will have zero or more input filenames.
 Program will have one or more statements with the following

syntax:

pattern {action}
 The pattern component of a program statement

indicates the basis for a line or record selection and
manipulation.

Dept of CSE 29

Syntax of awk programming statement:
 The action part of every program statement is surrounded

by a pair of curly brackets.
 The action part is made up of C-like statements, which

performs actions on the lines or records selected based
upon the pattern component.upon the pattern component.

 The patterns can be simple words or regular expressions or
they can be more complicated conditions.

 awk employs two options:

Dept of CSE 30

Option Description

-F Specifies the input field separator.

-f Specifies that the program is on a separate file.

Structure of awk script:
awk scripts are divided into three major parts:

comment lines start with #

Dept of CSE 31

Structure of awk script:
 BEGIN: pre-processing

 performs processing that must be completed before the file
processing starts (i.e., before awk starts reading records from the
input file).

 useful for initialization tasks such as to initialize variables and to
create report headings.create report headings.

 A typical BEGIN section statement that identifies the input field
separator as the colon (:) character is:

‘BEGIN {FS ”:” }’

 BODY: Processing
 contains main processing logic to be applied to input records.
 like a loop that processes input data one record at a time:

 if a file contains 100 records, the body will be executed 100 times,
one for each record.

Dept of CSE 32

Structure of awk script:
 END: post-processing

 contains logic to be executed after all input data have
been processed

 logic such as printing report grand total should be
performed in this part of the script performed in this part of the script

 A typical END section statement that prints number of
records processed is:

‘ END { print NR }’

Dept of CSE 33

Operational mechanism of awk:
 The working of awk is similar to sed:

 awk picks up the records or lines from the input file one by one and
applies all the program statements present on the program file to
each line.

 Applying all the program lines means pattern portion of the every  Applying all the program lines means pattern portion of the every
program statement is compared with the presently picked up line
one by one.

 Whenever the pattern portion of the program statement matches,
the action mentioned in the action portion of the matched program
statement is carried out on the present input line.

 The only difference between sed and awk is:
 awk being a language, the pattern portion of awk statement might

be made up of any of the operators, decision-making statements,
looping control structures, regular expressions and so on.

Dept of CSE 34

Variables in awk:
 awk supports two types of variables:

 User-defined variables.
 Built-in Variables.

 User-defined variables:
 These are names of storage locations that hold either strings or numbers.These are names of storage locations that hold either strings or numbers.
 These names are constructed using only alphanumeric and underscores.

Such names must begin with a letter.
 Similar to shell, it is not necessary to either initialize or type declare the

variables in awk also.
 The variables once defined get set to zero or a null string automatically. The

type of variable is decided depending on the context.
 In case of a tie between string and numeric operators, the context will be

decided as the string.

Dept of CSE 35

Variables in awk:
 Built-in Variables:

 Built-in variables are predefined. Names of these variables are
constructed using uppercase letters.

Variable Meaning

FILENAME Name of the current input file.

FS Input field separator (default: blank and tab)

Dept of CSE 36

FS Input field separator (default: blank and tab)

NF Number of fields in Input record.

NR Number of current record.

OFS Output field separator (default: blank or tab).

ORS Output Record Separator (default: new line).

RS Input Record Separator (default: new line).

ARGC Number of command line arguments.

ARGV Command line arguments array.

Records, fields and special variables:
 The awk treats every line of an input file as a record. This input

file could be either a text file or a database file.
 Each unit or word of a record is known as a field. Thus a record is

made up of many fields.
 The fields are separated by a blank or tab character by default. The fields are separated by a blank or tab character by default.
 The default value of the field separator is available in a built-in

variable FS. The default value of FS can be changed if required.
 Whenever awk picks up a line or a record for processing, it

automatically splits every record into a number of fields.
 Contents of each of these fields are automatically saved in special

variables $1, $2, $3 and so on.
 The information regarding the total number of fields in a record

will be available in built-in variable NF.
Dept of CSE 37

The $0: Another special variable:
 The awk picks up one line or a record at a time for

processing.
 The current line or record that is being processed will

be available in a special variable called $0.

Dept of CSE 38

Patterns:
 awk allows the use of different types of patterns.
 As an awk script is executed, patterns are evaluated against each of the

records or lines found in the input file.
 Whenever a pattern matches a record or line, the action mentioned in

the action part of the awk program statement is taken.
 An awk program statement may not have a pattern at all and such cases An awk program statement may not have a pattern at all and such cases

are called no pattern case. In such case, action is taken on all the
records or lines of the input file.

 The BEGIN and END are two special patterns.
 Whenever a pattern is present, it is made up of an expression. An

expression may be an arithmetic expression, relational expression,
logical expression, or a regular expression.

 Regular expressions of awk are similar to those of egrep. Thus patterns
can be constructed by using any of the metacharacters used with both
grep and egrep.

Dept of CSE 39

Patterns:
 Regular expressions are always written within a pair of

forward slashes (/).
 The awk has an operator called the match operator

represented by ~ and an operator called no-match
operator represented by !~.operator represented by !~.

 In the case of match operator, the regular expression
must match the text whereas in the case of no-match
operator the regular expression must not match the
text.

Dept of CSE 40

Operators:
 Similar to shell and other programming languages, we can use

arithmetic, relational, logical and assignment operators in awk
programming also.

Category Operators Description

Arithmetic Operators
+ - Plus, Minus

* / % Multiply, divide,
remainder

Dept of CSE 41

remainder

Logical Operators

|| Logical OR

&& Logical AND

! Negation or
Complementation

Relational Operators > >= < <= == != Relational operators

Assignment Operators = += -= *= /= %= Assignment and their
short hand notations

Match operators ~ !~
These are match and no-

match operators
respectively

Increment and decrement
operators ++ -- Increment, decrement

(prefix or postfix)

Sample Input Files
The contents of two structured files named phone.lst and
marks.pu have been used as input files.

Dept of CSE 42

Simple awk programs: Example-1

$awk ’{print $1,$2}’ marks.pu # displays field1
and field2 values of file marks.pu

Dept of CSE 43

Simple awk programs: Example-2
$awk ‘$2>80 {print $1}’ marks.pu
#displays the names of students whose marks in
subject1 is >80

Dept of CSE 44

Simple awk programs: Example-3
$ awk ‘$2+$3+$4>=240 {print $1, $2+$3+$4}’ marks.pu

Dept of CSE 45

Simple awk programs: Example-4

$ awk ‘$2 >=60 && $2 <=80 {print $1,$2}’ marks.pu

Dept of CSE 46

Simple awk programs: Example-5
$awk ‘/^[DV]/ {print $1}’ marks.pu

Dept of CSE 47

Simple awk programs: Example-6

$awk ‘/(Vinay|Anil)/ {print $1 $4}’ marks.pu

Dept of CSE 48

Simple awk programs: Example-7

$awk ‘/(Vinay|Anil)/ {printf $1 $4}’ marks.pu

Dept of CSE 49

Simple awk programs: Example-8

$awk ‘NR ==2, NR==4 {printf(“%4s %-12s %7d\n”, $1,$2,$3)}’ phone.lst

Dept of CSE 50

Simple awk programs: Example-9

Being a filter program, the awk can take its input from
the output of another program.

$date | awk ‘{print “The day is:”, $1
print “The month is:”, $2
print “The year is:”, $6}’print “The year is:”, $6}’

Dept of CSE 51

Simple awk programs: Example-10

• An awk program is a filter that can take input piped or
redirected to it from another file.

• Also its output can be redirected or piped as input to another
program.program.
$awk ‘{printf “%-9s %5d\n”, $1,$2+$3+$4}’ marks.pu | sort –r
+ 1 > result

Dept of CSE 52

awk control structures:
 Like many programming languages, awk consists of both decision-

making and loop-control structures.
 The if….else:

 The syntax of if-else construct is:
if (expression)
{{

statements-1
}
else
{

statements2
}

•The else part of this construct is optional. When the program control
comes across this construct, first the expression is evaluated.
•If this evaluation results in true, then only the statements1 part is
executed. If false, statements2 part is executed.

Dept of CSE 53

awk control structures:
 The conditional Operator:

 The syntax as well as the behavior of this operator is
exactly the same as that of the conditional operator
available in the C language.

 The syntax of this operator is: The syntax of this operator is:
expr ? action1 : action2

 When the program control first comes across this
construct, the expr will be evaluated.

 If this evaluation results in true, then only the action1
part will be executed. Otherwise, only the action2 part
will be executed.

Dept of CSE 54

awk control structures: Looping
 The while:
 This is an entry-controlled loop structure. The syntax

of this structure is:
while(expression)
{

statements
}

 The statements will be executed repeatedly as long as
the expression will be true.

Dept of CSE 55

awk control structures: Looping
 The do:
 This is an exit-controlled Loop. The syntax of this structure

is:
do

StatementsStatements
while(expression)

 When the program construct comes across this construct,
the statements between the keywords do and while are
executed once.

 Afterwards, the statements between the do and while are
executed repeatedly as long as the expression with the
while is true.

Dept of CSE 56

awk control structures: Looping
 The for:
 This is one of the widely used loop-control structures.
 The syntax of this construct is exactly same as that of

for construct available in C. The syntax is:
{for(expression1;condition;expression2)

statements
}

 Here, expression1 causes the loop initialization,
expression2 updates the loop control variable and the
condition performs the necessary limit test.

Dept of CSE 57

awk control structures: Looping
 The break and continue:
 These are the two statements that also affect the

control flow of a loop.
 The break statement breaks out of the loop such that

no more iterations of the loop are performed.no more iterations of the loop are performed.
 The continue statement stops the current iteration

before reaching the end of the loop and starts a new
iteration from the top of the loop.

Dept of CSE 58

awk control structures: Looping
 The for … in:
 This construct is useful in processing associative

arrays.
 The syntax of this construct is:

for(index_name in array_name)
Statements

 When the program control comes across this
construct, the statements are executed for all index
values in the mentioned array.

Dept of CSE 59

Functions in awk:
 awk also permits the use of functions like many other

programming languages.
 Functions are generally used to carry out simple yet

important tasks repeatedly or frequently.
awk has two types of functions: awk has two types of functions:
 Pre-defined functions.
 User-defined functions.

 Pre-defined functions:
 These are the functions that are directly available in

the language. awk has many pre-defined functions.

Dept of CSE 60

Predefined Functions:
 The length function:
 This function takes one or no arguments. The general format of this

function is:
length(string)

 The execution of this function returns the total number of The execution of this function returns the total number of
characters present in the string.

 In case no argument is given, the entire current record (available in
$0) will be taken as an argument and its length will be returned.

 Example:
awk 'length($0) == 15 {print $0}' marks.pu

 In the above example, a record of length equal to 15 will be selected
and printed. Here, complete record has been printed because of the
use of the variable $0.

Dept of CSE 61

Predefined Functions:
 The index function:
 This function returns the first position of a substring with

in a string. The general format of this function is:
index(string,substring)

 In case the substring is not found, it returns a 0 (zero). In case the substring is not found, it returns a 0 (zero).
 Example:

awk '/^R/ {print "The substring ika begins at position
number:", index($1,"ika"),"in the pattern",$1}' marks.pu
 In the above example, all the records on the input file

marks.pu that begin with ‘R’ have been picked up and all
the first fields that have ‘ika’ as a substring in them have
been printed.

Dept of CSE 62

Predefined functions:
 The substr function:
 This function extracts and returns a substring from a string. It has the following

two formats:
substr(string,position,length)
substr(string,position)

 The only difference between two formats is in the lengths of the substring
extracted and returned.extracted and returned.

 Both return the substring from string starting at the position mentioned.
 If a length is specified, then the number of characters of the substring returned

is equal to the length mentioned.
 When length is not mentioned explicitly, everything upto the end of the string

from the position is returned.
date | awk '{print "The current year is",substr($6,3)}‘

 In the above command, awk being a filter gets its input from the date
command, prints the last two characters of the sixth field starting from the
third position.

Dept of CSE 63

Predefined functions:
 The split function:
 This function splits any given string into elements of an array. The general

format of this function is:
split(string,array,separator)

 The splitting takes place on the basis of the specified separator character.
 If a field is not mentioned, the value of the FS will be taken as the field  If a field is not mentioned, the value of the FS will be taken as the field

separator.
 The array’s indices start from 1 and go up to a value that is equal to the

number of elements in the array.
awk -F\| '/murthy/ {split($0,arr_dar, "r"); print arr_dar[2]}' phone.lst

 When the above command is executed, the selected record(s) is/are split
on the field separator character ‘r’ and the split elements are saved in the
array arr_dar.

 This type of awk command can be used to pick up a full name when only
the last name is entered.

Dept of CSE 64

Predefined functions:
 Print functions:
 There are three print functions in awk.
 They are:

 print- that prints out in an unformatted way.
printf- that prints out in a formatted way. printf- that prints out in a formatted way.

 sprintf- that prints out strings in a formatted way.

 By default, all these print functions send their output
on to the standard output file.

Dept of CSE 65

Predefined functions:
 The print function:
 This function prints the specified data on to the standard output.

Each print action must be written on a separate line.
 When multiple fields are being printed, they must be separated

with commas.with commas.
 If nothing is specified, then the entire current line or record is

printed.
 By default, the input field separator is taken as the output field

separator.
 If necessary, output field separator can be defined using the

built-in variable OFS.
 If strings are to be printed, they must be enclosed within quotes.

Dept of CSE 66

Predefined functions:
 The printf function:
 This function is used to print the data in any formatted manner.
 This function is similar to printf function in C.
 Similar to C, each printf function consists of a format string with

in double quotes and a list of zero or more number of elements in double quotes and a list of zero or more number of elements
that could be a variable or an expression or a string.

 The format string contains field specifiers that begin with % sign
and ends with a format code.

 This format code holds information regarding the total width in
which the data is to be printed, information about left or right
adjusted printing as well as information on the required
precision.

Dept of CSE 67

Predefined functions:
 The printf function format specifiers:

%d, %i decimal integer
%c single character
%s string of characters%s string of characters
%f floating point number
%o octal number
%x hexadecimal number
%e scientific floating point notation
%% the letter “%”

Dept of CSE 68

Predefined functions:
 The sprintf function:
 This function uses the same format specifications as

the printf function. This function does not print the
results.

 It combines two or more fields into one string and  It combines two or more fields into one string and
returns the resultant string.

 This assigned variable could be assigned to a variable
which could be used later in the script.

Dept of CSE 69

The sprintf function: Example

Dept of CSE 70

The getline function: (predefined)
 This function helps in getting an input value

interactively.
 The input may come either from the standard input

file or any other designated file.
These filenames are given in the form of a string by  These filenames are given in the form of a string by
enclosing it within a pair of double quotes.

 The standard input file used here is /dev/tty.
 This function upon execution returns either 1 or 0 or -1.

 1 indicates the successful reading of a line.
 0 indicates the reaching of the end-of-file character.
 -1 is returned under error conditions.

Dept of CSE 71

The getline function:

Dept of CSE 72

The system function: (predefined)
 We can execute any UNIX command using system

function.
awk 'BEGIN { system("date")}‘

 The execution of the above command displays current
date as follows:date as follows:

Fri Sep 11 20:01:33 IST 2020
 The command to be executed must be within double

quotes.

Dept of CSE 73

User-defined functions:
 Like any other programming languages, we can write our

own functions in awk also.
 Once a function is defined, it may be used as any other

built-in function.
 A function is defined using the keyword function, a  A function is defined using the keyword function, a

function name followed by parameters list and the body of
the function.

 The general format is:
function function_name(argument1, argument2, ...)
{

function body
}

Dept of CSE 74

User-defined functions:
#!/bin/awk -f
function add(num1,num2)
{

print num1 + num2print num1 + num2
}

BEGIN {
add(ARGV[1],ARGV[2])

}
$./add.awk 2 3 #This command adds two

numbers 2 and 3 which are being passed at command line.

Dept of CSE 75

awk examples:
AWK script to count the number of lines in a file that
do not contain vowels:

Dept of CSE 76

Awk examples:
Awk script to find number of characters, words and lines in a file:

Dept of CSE 77

