
Code Generation

Introduction

Front
end

Code
generator

Code
Optimizer

Symbol
table

Source
program

Intermediate
code

Intermediate
code

Target
program

Position of code generator

Issues in the Design of a Code
Generator

• The most important criteria for the code gen is that it
produces correct codes.

• Depend on

– Input to the code generation(IR)

– Target program(language)

– Operating System

– Memory management

– Instruction Selection

– Register allocation and assignment

– Evaluation order

Basic Blocks and Flow Graphs

• Flow Graph: A graph representation of three address
statements, called flow graph.

• Nodes in the flow graph represent computations.

• Edges represent the flow of control.

• Used to do better job of register allocation and instruction
selection.

Basic Block:
A basic block is a sequence of consecutive statements

in which flow of control enters at the beginning and leaves at
the end without halt or possibly of the branching except at the
end.

Basic Blocks

• Algorithm: Partitioning three address instructions into basic blocks

• Input: a sequence of three address instructions.

• Output: a list of basic block for that sequence in which each instruction is
assigned to exactly one basic block.

– Method

• We first determine the leader(first instruction in some basic block)

1) The first instruction is a leader

2) Any instruction that is the target of a conditional or unconditional goto is a leader

3) Any instruction that immediately follows a goto or unconditional goto instruction
is a leader

• For each leader, its basic block consists of the leader and all the instructions
up to but not including the next leader or the end of the program.

Basic Blocks

• Example : Consider the source code where 10 x 10
matrix a is converted into an identity matrix.

for i from 1 to 10 do

for j from 1 to 10 do

a[i,j) = 0.0;

for i from 1 to 10 do

a[i, i] = 1.0;

• In generating the intermediate code, we have assumed that
the real-valued array elements take 8 bytes each, and that the
matrix a is stored in row-major form.

Intermediate code to set a 10 x 10 matrix to an identity
matrix

• 1) i = 1

• 2) j = 1

• 3) t l = 10 * i

• 4) t 2 = t l + j

• 5) t 3 = 8 * t2

• 6) t 4 = t3 - 88

• 7) a [t 4] = 0.0

• 8) j = j + 1

• 9) i f j <= 10 goto (3)

• 10) i = i + 1

• 11) i f i <= 10 goto (2)

• 12) i = 1

• 13) t 5 = i - 1

• 14) t 6 = 88 * t5

• 15) a [t 6] = 1.0

• 16) i = i + 1

• 17) i f i <= 10 goto (13)

Basic Blocks

• The leaders are instructions:-
1) By rule 1 of the algorithm

2) By rule 2 of the algorithm

3) By rule 2 of the algorithm

10) By rule 3 of the algorithm

12) By rule 3 of the algorithm

13) By rule 2 of the algorithm

We conclude that the leaders are instructions 1, 2, 3, 10,
12, and 13.

Basic Blocks

• The basic block of each leader contains all the
instructions from itself until just before the next
leader.

• Thus,the basic block 1 is just having 1)

the basic block 2 is having 2)

the basic block 3 is having 3) to 9)

the basic block 4 is having 10) to 11)

the basic block 5 is having 12)

the basic block 6 is having 13) to 17)

Flow Graphs

• Once an intermediate-code program is partitioned into basic
blocks, we represent the flow of control between them by a
flow graph.

• The nodes of the flow graph are the basic blocks.

• we add two nodes, called the entry and exit, that do not
correspond to executable intermediate instructions.

• There is an edge from the entry to the first executable node
of the flow graph, that is, to the basic block that comes from
the first instruction of the intermediate code.

• There is an edge to the exit from any basic block that contains
an instruction that could be the last executed instruction of
the program.

Flow Graphs

Representation of Flow Graphs

• Flow graphs, being quite ordinary graphs, can
be represented by any of the data structures
appropriate for graphs.

• It is likely to be more efficient to create a
linked list of instructions for each basic block.

Loops

• Every program spends most of its time in
executing its loops, it is especially important
for a compiler to generate good code for
loops.

• Many code transformations depend upon the
identification of "loops" in a flow graph.

Loops

• We say that a set of nodes L in a flow graph is a loop
if

• 1. There is a node in L called the loop entry with the
property that no other node in L has a predecessor
outside L. That is, every path from the entry of the
entire flow graph to any node in L goes through the
loop entry.

• 2. Every node in L has a nonempty path, completely
within L, to the entry of L.

Loops

Example: The flow graph has three loops:

1. B3 by itself.

2. B6 by itself.

3. {B2, B3, B4}.

Flow Graphs

• The successor of B1 is B2.

• The successor of B3 is B3 and B4.

• The successor of B4 is B2,B3,B4 and B5.

• The successor of B5 is B6.

Next-Use Information

• If the value of a variable that is currently in a register will
never be referenced subsequently, then that register can be
assigned to another variable.

• Suppose three-address statement i assigns a value to x. If
statement j has x as an operand, and control can flow from
statement i to j along a path that has no intervening
assignments to x, then we say statement j uses the value of x
computed at statement i. We further say that x is live at
statement i.

• We wish to determine for each three-address statement x = y
+ z what the next uses of x, y, and z are.

Next-Use Information
Algorithm to determining the liveness and next-use

information for each statement in a basic block.

• INPUT: A basic block B of three-address statements. We assume that the

• symbol table initially shows all nontemporary variables in B as being live
on exit.

• OUTPUT: At each statement i: x = y + z in B, we attach to i the liveness and

• next-use information of x, y, and z.

• METHOD: We start at the last statement in B and scan backwards to the

• beginning of B. At each statement i: x = y + z in B, we do the following:
– 1. Attach to statement i the information currently found in the symbol table regarding

the next use and liveness of x, y, and y.

– 2. In the symbol table, set x to "not live" and "no next use."

– 3. In the symbol table, set y and z to "live" and the next uses of y and z to i.

Next-Use Information

• Here we have used + as a symbol representing any operator. If
the three-address statement i is of the form x = + y or x = y,
the steps are the same as above, ignoring z.

• Note that the order of steps (2) and (3) may not be
interchanged because x may be y or z.

• For example :-quadruple i: x := y op z;
– Record next uses of x, y ,z into quadruple

– Mark x dead (previous value has no next use)

– Next use of y is i; next use of z is i; y, z are live

Transformation on Basic Block

• A basic block computes a set of expressions.

• Transformations are useful for improving the
quality of code.

• Two important classes of local optimizations
that can be applied to a basic blocks

– Structure Preserving Transformations

– Algebraic Transformations

The DAG Representation of Basic Blocks

• Many important techniques for local optimization begin by
transforming a basic block into a DAG (directed acyclic graph).

• Construction of a DAG for a basic block is as follows:

1. There is a node in the DAG for each of the initial values of the
variables appearing in the basic block.

2. There is a node N associated with each statement s within the
block. The children of N are those nodes corresponding to
statements that are the last definitions, prior to s, of the
operands used by s.

• 3. Node N is labeled by the operator applied at s, and also
attached to N is the list of variables for which it is the last
definition within the block.

• 4. Certain nodes are designated output nodes. These are the
nodes whose variables are live on exit from the block; that is,
their values may be used later, in another block of the flow
graph. Calculation of these "live variables" is a matter for
global flow analysis.

• The DAG representation of a basic block lets us perform several
code improving transformations on the code represented by the
block.

• a) We can eliminate local common subexpressions, that is,
instructions that compute a value that has already been computed.

• b) We can eliminate dead code, that is, instructions that compute a
value that is never used.

• c) We can reorder statements that do not depend on one another;
such reordering may reduce the time a temporary value needs to
be preserved in a register.

• d) We can apply algebraic laws to reorder operands of three-
address instructions, and sometimes thereby simplify the
computation.

Finding Local Common Subexpressions

• Common subexpressions can be detected by using "value-
number" method.

• As a new node M is about to be added, whether there is an
existing node N with the same children, in the same order, and
with the same operator.

• If so, N computes the same value as M and may be used in its
place.

• Consider a block a = b + c

b = a - d

c = b + c

d = a - d

The DAG for the basic block is

• The node corresponding to the fourth statement d = a - d has
the operator - and the nodes with attached variables a and do
as children.

• Since the operator and the children are the same as those for
the node corresponding to statement two, we do not create
this node, but add d to the list of definitions for the node
labeled —.

• In fact, if b is not live on exit from the block, then we do not
need to compute that variable, and can use d to receive the
value represented by the node labeled —.

• The block then become

a = b + c

d = a - d

c = d + c

• However, if both b and d are live on exit, then
a fourth statement must be used to copy the
value from one to the other.

• a = b + c;

• b = b - d

• c = c + d

• e = b + c

• When we look for common subexpressions we
really are looking for expressions that are
guaranteed to compute the same value, no
matter how that value is computed.

• Thus, the DAG method will miss the fact that
the expression computed by the first and
fourth statements in the sequence is the same
b0+c0.

• That is, even though b and c both change
between the first and last statements, their
sum remains the same, because

b + c = (b - d) + (c + d).

• The DAG does not exhibit any common
subexpressions.

• However, algebraic identities applied

• to the DAG, may expose the equivalence.

Dead Code Elimination

• Delete from a DAG any root (node with no
ancestors) that has no live variables attached.

• Repeated application of this transformation
will remove all nodes from the DAG that
correspond to dead code.

Structure Preserving Transformations

• Dead – Code Elemination

• Renaming Temporary Variables
– say, t = b+c where t is a temporary var.
– If we change u = b+c, then change all instances of t to u.

• Interchange of Statements
– t1 = b + c
– t2 = x + y
– We can interchange iff neither x nor y is t1 and neither b

nor c is t2

Say, x is dead, that is never subsequently used, at the
point where the statement x = y + z appears in a block.
We can safely remove x

Algebraic Transformations

• Replace expensive expressions by cheaper one
– X = X + 0 eliminate
– X = X * 1 eliminate
– X = y**2 (why expensive? Answer: Normally implemented

by function call)
• by X = y * y

• Flow graph:
– We can add flow of control information to the set of basic

blocks making up a program by constructing directed
graph called flow graph.

– There is a directed edge from block B1 to block B2 if
• There is conditional or unconditional jump from the last

statement of B1 to the first statement of B2 or
• B2 is immediately follows B1 in the order of the program, and B1

does not end in an unconditional jump.

Peephole Optimization

• The peephole is a small, sliding window on a
program. The code in the

• peephole need not be contiguous, although
some implementations do require this

characteristic of peephole optimizations:

1 Redundant-instruction elimination

2 Flow-of-control optimizations

3 Algebraic simplications

4 Use of machine idioms

Eliminating Redundant Loads and Stores:

If we see the instruction sequence

LD R0, a

ST a, R0

in a target program, we can delete the store instruction because whenever it is executed,
the first instruction will ensure that the value of a has already been loaded into register
R0.

Eliminating Unreachable Code :

Another opportunity for peephole optimization is the removal of unreachable

instructions. An unlabeled instruction immediately following an unconditional

jump may be removed

if debug != 1 goto L2

Print debugging information

L2:

If debug is set to 0 at the beginning of the program, constant propagation

would transform this sequence into

if 0 != 1 goto L2

print debugging information

L2:.

Flow-of-Control Optimizations :
Simple intermediate code-generation algorithms frequently produce jumps to jumps, jumps to
conditional jumps, or conditional jumps to jumps. These unnecessary jumps can be eliminated in
either the intermediate code or the target code by the following types of peephole optimizations.
We can replace the sequence
goto L1
………
L1: goto L2
by the sequence
goto L2
…….
L1: goto L2
If there are now no jumps to L1, then it may be possible to eliminate the statement
L1: goto L2
provided it is preceded by an unconditional jump.
Algebraic Simplication and Reduction in Strength :
These algebraic identities can also be used by a peephole optimizer to
eliminate three-address statements such as
x = x + 0
or
x = x * 1
in the peephole.

Use of Machine Idioms :
some machines have auto-increment and auto-decrement addressing modes. These add
or subtract one from an operand before or after using its value. The use of the modes
greatly improves the quality of code when pushing or popping a stack, as in parameter
passing. These modes can also be used in code for statements like x = x+1.

⦿ Instruction involving only register operands are shorter and

faster then those involving memory operands. This also

means that proper use of register help in generating the good

code. This section presents various strategies for deciding

what values in a program should reside in registers(register

allocation)and in which register each value should reside

(register assignment).

⦿ One approach to register allocation and assignment is to

assign specific value in an object program to certain registers.

⦿ This approach has the advantage that it simplifies the design

of a compiler.

RegisterAllocation andAssignment

⦿ Disadvantage is that , applied too strictly , it uses registers

inefficiently; certain registers may go unused over substantial

portions of code, while unnecessary loads and stores are

generated.

⦿ Now we will discuss various strategies used in register and

assignment and those

› Global Register Allocation

› Usage Counts

› Register Assignment for Outer Loops

› Register Allocation by Graph Coloring

Global Register Allocation

⦿ Generating the code the registers are used to hold the value

for the duration of single block.

⦿ All the live variables are stored at the end of each block.

⦿ For the variables that are used consistently we can allocate

specific set of registers.

⦿ Hence allocation of variables to specific registers that is

consistent across the block boundaries is called global register

allocation.

Usage Counts

⦿ The usage count is the count for the use of some variable x in
some register used in any basic block.

⦿ The usage count gives the idea about how many units of cost
can be saved by selecting a specific variable for global
register allocation.

⦿ The approximate formula for usage count for the loop L in
some basic block B can be given as,

⦿ ∑ (use(x , B)+2*live(x , B))

Block B in L

Where use (x, B) is number of times x used in block B prior to
any definition of x and live (x, B)=1 is live on exit from B;
otherwise live(x)=0.

⦿ Having assigned registers and generated code for inner loops,

we may apply the same idea to progressively loops.

⦿ If an outer loop L1, contains an inner loop L2, the names

allocated registers in L2 need not be allocated registers in L1-

L2.

⦿However, if name x is allocated a register in loop L1 but not

L2, we must store x on entrance to L2 and load x if we leave

L2, and enter a block of L1-L2.

⦿ Similarly, if we choose to allocate x a register in L2, but not

L1 must load x on entrance to L2 and store x on exit from L2.

⦿ A register is needed for a computation but all available registers
are in use, the contents of one of the used registers must be stored
(Spilled)into a memory location in order to free up register.

⦿ Graph coloring is a simple systematic technique for allocating
registers and managing register spills.

⦿ In this method, two passes are used.

⦿ In first , target-machine instruction are selected as though there
were as infinite number of symbolic registers; in effect, names used
un the intermediate code become names of registers and the three-
address statements become machine- language statements.

In the second pass, for each procedure a register-interference graph
is constructed in which the nodes are symbolic registers and an
edge connects two nodes if one is live at a point where the other is
defined.

Machine-Independent Optimization

• The main aim of machine-independent optimization is to improve the
generated intermediate code so that compiler can get better target code.

• Eliminating unwanted code from the object code or replacing one set of
code with another set of code, which makes the object code faster without
changing the result of object code, is generally called code
improvement or code optimization.

The Principle Sources of Optimization :
 Common sub expression elimination,

 Copy propagation,

 Dead-code elimination, and

 Constant folding

Common Sub expressions elimination:

An occurrence of an expression E is called a common sub- expression if E was

previously computed, and the values of variables in E have not changed since the

previous computation. We can avoid recomputing the expression if we can use the

previously computed value.

For example

t1: = 4*i

t2: = a [t1]

t3: = 4*j

t4: = 4*i

t5: = n

t6: = b [t4] +t5

CONT.……

 The above code can be optimized using the common sub-expression

elimination as

 t1: = 4*i

 t2: = a [t1]

 t3: = 4*j

 t5: = n

 t6: = b [t1] +t5

 The common sub expression t4: =4*i is eliminated as its

computation is already in t1. And value of i is not been changed

from definition to use.

Copy Propagation:

 Assignments of the form f : = g called copy statements, or copies for

short.

 The idea behind the copy-propagation transformation is to use g for f, whenever

possible after the copy statement f: = g.

 Copy propagation means use of one variable instead of another.

 This may not appear to be an improvement, but as we shall see it gives us an

opportunity to eliminate x

For example:

 x=Pi;

 ……

 A=x*r*r;

 The optimization using copy propagation can be done as follows:

 A=Pi*r*r;

 Here the variable x is eliminated

Dead-Code Eliminations:

 A variable is live at a point in a program if its value can be used

subsequently; otherwise, it is dead at that point.

 A related idea is dead or useless code, statements that compute

values that never get used.

 While the programmer is unlikely to introduce any dead code

intentionally ,it may appear as the result of previous

transformations.

An optimization can be done by eliminating dead code.

 Example:

 i=0;

 if(i=1)

 {

 a=b+5;

 }

CONT.….

 Here, ‘if ’statement is dead code because this condition will never

get satisfied.

 We can eliminate both the test and printing from the object code.

More generally,

 deducing at compile time that the value of an expression is a

constant and using the

 constant instead is known as constant folding.

 One advantage of copy propagation is that it often turns the copy

statement into dead

 code.

 For example,

 a=3.14157/2 can be replaced by

 a=1.570 there by eliminating a division operation.

Loop Optimizations:

 We now give a brief introduction to a very important place for

optimizations, namely loops, especially the inner loops where

programs tend to spend the bulk of their time.

 The running time of a program may be improved if we decrease the

number of instructions in an inner loop, even if we increase the

amount of code outside that loop.

 Three techniques are important for loop optimization:

 code motion, which moves code outside a loop;

 Induction-variable elimination, which we apply to replace

variables from inner loop.

 Reduction in strength, which replaces and expensive operation by

a cheaper one, such as a multiplication by an addition.

Code Motion:

 An important modification that decreases the amount of code in a

loop is code motion.

 This transformation takes an expression that yields the same result

independent of the number of times a loop is executed (a loop-

invariant computation) and places the expression before the loop.

 Note that the notion “before the loop” assumes the existence of an

entry for the loop.

 For example, evaluation of limit-2 is a loop-invariant computation in

the following while-statement:

 while (i <= limit-2) /* statement does not change limit*/

 Code motion will result in the equivalent of

 t= limit-2;

 while (i<=t) /* statement does not change limit or t */

Induction Variables :

 Loops are usually processed inside out. For example consider the loop

around B3.

 Note that the values of j and t4 remain in lock-step; every time the

value of j decreases by 1, that of t4 decreases by 4 because 4*j is

assigned to t4. Such identifiers are called induction variables.

 When there are two or more induction variables in a loop, it may be

possible to get rid of all but one, by the process of induction-variable

elimination. For the inner loop around B3 in Fig. we cannot get rid of

either j or t4 completely; t4 is used in B3 and j in B4.

 However, we can illustrate reduction in strength and illustrate a part of

the process of induction-variable elimination.

 Eventually j will be eliminated when the outer loop of B2- B5 is

considered.

Introduction to Data- flow analysis

• It is the analysis of flow of data in control flow graph, i.e., the
analysis that determines the information regarding the
definition and use of data in program. With the help of this
analysis optimization can be done. In general, its process in
which values are computed using data flow analysis.The data
flow property represents information which can be used for
optimization.

• Basic Terminologies –

• Definition Point: a point in a program containing some
definition.

• Reference Point: a point in a program containing a reference
to a data item.

• Evaluation Point: a point in a program containing evaluation
of expression.

Data Flow Properties –
•Available Expression – A expression is said to be available at a program point x iff

along paths its reaching to x. A Expression is available at its evaluation point.

A expression a+b is said to be available if none of the operands gets modified

before their use.

Reaching Definition – A definition D is reaches a point x if there is path from D to x

in which D is not killed, i.e., not redefined.

Live variable – A variable is said to be live at some point p if from p to end the variable

is used before it is redefined else it becomes dead.

Busy Expression – An expression is busy along a path iff its evaluation exists along

that path and none of its operand definition exists before its evaluation along the path.

