
1

Syntax Trees

Syntax-Tree

– an intermediate representation of the compiler’s input.

– A condensed form of the parse tree.

– Syntax tree shows the syntactic structure of the program while

omitting irrelevant details.

– Operators and keywords are associated with the interior nodes.

– Chains of simple productions are collapsed.

Syntax directed translation can be based on syntax tree as well as

parse tree.

Syntax Tree-Examples

Expression:

+

5 *

3 4

• Leaves: identifiers or constants

• Internal nodes: labelled with

operations

• Children: of a node are its

operands

if B then S1 else S2

if - then - else

Statement:

• Node’s label indicates what kind

of a statement it is

• Children of a node correspond to

the components of the statement

2

B S1 S2

Constructing Syntax Tree for Expressions

• Each node can be implemented as a record with several fields.

• Operator node: one field identifies the operator (called label of the node) and

remaining fields contain pointers to operands.

• The nodes may also contain fields to hold the values (pointers to values) of

attributes attached to the nodes.

• Functions used to create nodes of syntax tree for expressions with binary

operator are given below.

– mknode(op,left,right)

– mkleaf(id,entry)

– mkleaf(num,val)

Each function returns a pointer to a newly created node.

3

Constructing Syntax Tree for Expressions-

Example: a-4+c

1. p1:=mkleaf(id,entrya);

2. p2:=mkleaf(num,4);

3. p3:=mknode(-,p1,p2)

4. p4:=mkleaf(id,entryc);

5. p5:= mknode(+,p3,p4);

• The tree is constructed bottom

up.

4

+

- id

id num 4

to entry for c

to entry for a

A syntax Directed Definition for Constructing

Syntax Tree

1. It uses underlying productions of the grammar to schedule the calls of

the functions mkleaf and mknode to construct the syntax tree

2. Employment of the synthesized attribute nptr (pointer) for E and T to

keep track of the pointers returned by the function calls.

PRODUCTION SEMANTIC RULE

E  E1 + T E.nptr = mknode(“+”,E1.nptr ,T.nptr)

E  E1 - T E.nptr = mknode(“-”,E1.nptr ,T.nptr)

E  T E.nptr = T.nptr

T  (E) T.nptr = E.nptr

T  id T.nptr = mkleaf(id, id.lexval)

T  num T.nptr = mkleaf(num, num.val)

5

Annotated parse tree depicting construction of

syntax tree for the expression a-4+c

6

E.nptr + T.nptr

E.nptr - T.nptr

T.nptr num

id

id
+

-

nu

m
id

id

E.nptr

Entry for a

Entry for c

Why intermediate code ?

• Details of the source language are confined to the front�end (analysis

phase) of a compiler, while details of the target machine are confined to

the back-end (synthesis) part.

• This saves a considerable amount of effort since with m front-ends and

n back-ends we have m*n compilers

• Intermediate representations

• Syntax Trees : Code is represented in the form of a tree where nodes

represent constructs in the source program; the children of a node

represent the meaningful components of a construct.

• Three-Address Code: Made up of instructions of the general form

x=y op z .

• X, y and z are the three addresses.

7

Three Address Code (TAC)

• An alternative form of intermediate (lower level) representation.

• x+y*x becomes t 1 = y * z , t 2 = x + t1

• For expressions TAC is very similar to syntax trees.

• For statements it would produce labels and jumps in a similar fashion

to machine code

8

TAC for a+a*(b-c)+(b-c)*d

9

Directed Acyclic Graphs

10

Nodes in a syntax tree represent constructs in the

source program

A DAG is used to identify common

sub�expressions. e.g. a+a*(b-c)+(b-c)*d

By doing so it gives the compiler important hints

on how to generate efficient code to evaluate the

expressions

DAG for a+a*(b-c)+(b-c)*d

11

Quadruples and Triples

• Data structures to hold three address code instructions.

• A Quadruple has four fields (x = y+z)

– Op (+)

– Arg1 (y)

– Arg2 (z)

– Result (x)

12

An example ...

13

Triples

• Omit result field.

• Instead of a result field we can use pointers to the triple structure itself.

• This makes DAG and triple representation practically identical, since

we are pointing to a node.

• In next example (n) indicates position n in the triple structure

14

An example ...

15

Control Flow

• A directed graph where

• Each node represents a statement

• Edges represent control flow

• Statements may be

• Assignments x = y op z or x = op z

• Copy statements x = y

• Branches goto L or if relop y goto L

• etc

16

Control-flow Graph Example

x := a + b;

y := a * b

While (y > a){

a := a +1;

x := a + b

}

17

Back-patching

• The problem in generating three address codes in a single pass is that

we may not know the labels that control must go to at the time jump

statements are generated.So to get around this problem a series of

branching statements with the targets of the jumps temporarily left

unspecified is generated.

• Back Patching is putting the address instead of labels when the proper

label is determined.

• Back patching Algorithms perform three types of operations

• 1) makelist (i) – creates a new list containing only i, an index into the

array of quadruples and returns a pointer to the list it has made.

• 2) Merge (i, j) – concatenates the lists pointed to by i and j, and returns

a pointer to the concatenated list.

• 3) Backpatch (p, i) – inserts i as the target label for each of the

statements on the list pointed to by p. 18

